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The problem of light scattering by particles of irregular shape is of great importance [1] since measurements Though the PhOA s not an exact method, it is a quite reasonable approximation, at least, for large particles

of light scattering by particulate media can be used for retrieving some microphysical characteristics of the where facet sizes are larger than incident wavelength. In comparison with the exact methods, the PhOA has
particles. The particles of irregular shapes are ubiquitous in nature. For example, the aerosol and dust particles two advantages. First, the PhOA does not demand extremely large computer resources. Second, the
in the atmosphere have irregular shapes. In cirrus clouds consisting of ice crystals the irregular shapes like numerical results obtained are obviously interpreted from the physical point of view using the concept of plane-
aggregates are often predominant [2]. In astrophysics, surfaces of the Moon and other planets are covered by parallel beams created inside a faceted particle.
regolith particles of irregular shapes, and so on.

When size of the particles x is less or comparable with light wavelengths, the problem of light scattering by In this work we have calculated the Mueller (scattering) matrices for
such irregular particles can be solved using the “exact” numerical methods like the T-matrix method, discrete large randomly oriented particles of irregular shapes using both
dipole approximation, finite difference time domain method, and so on. However, in the case of large particles, geometric-optics and physical-optics approximations [3]. In the case
these exact methods are not successful because of great demands to computer resources. Here the of the irregular shapes shown in Fig. 1, dihedral angles of 90° don't
geometric-optics approximation (GOA) looks reasonable. However, geometric optics ignores wave existand there is a question whether the backscattering peak appears
phenomena that become essential at some scattering angles, especially in the forward and backward for such particle shapes. We show that light backscatter by a large
directions. It is worthwhile to note that the backscattering direction is of special interest since only this direction Irregular particle at averaging over random particle orientations is split
IS used in active remote sensing instruments like lidars and radars. into the coherent and incoherent part similarly to the phenomena well

known for multiple scattering media. The incoherent part has no peak

in the exact backward direction and its magnitude is close to the Figure 2. Typical backscattring beams
geometric-optics counterpart. The coherent part appears as a narrow

backscattering peak whose angular width is approximately equal to

the ratio of (wavelength/particle size).

Figure 1. Samples of imegular particle shapes
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