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Multi-angle polarimetry for remote sensing 
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Space-borne multi-angle spectro-polarimetric measurements (POLDER, 3MI, MAIA,
SPEXone, HARP2, DPC, etc.) provide multi-dimensional constraints to anchor aerosol
distributions and their optical and microphysical properties.



Multiangle polarimetry: benefits

Multi-angle polarimetry and hyperspectral measurements strongly
constrain the retrieval of aerosol abundance, absorption and height.
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Also informed by community efforts on retrieving observations from POLDER, SPEX airborne, AirHARP, 
RSP, etc which integrate subsets of multi-angle, polarimetry, multi-spectral measurements
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AirMSPI retrieval test 1 nm bandwidth in O2-A band (EPIC)

Xu F. et al. 2017
Xu R. et al. 2017



Algorithm challenges and opportunities
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Ø Aerosol remote sensing is subjected to ill-posedness
§ Solution is non-unique due to insufficient information in observations

§ High dimensionality of parameter space causes inversion instability and large 
computational burden 

Ø We utilize aerosol spatial and temporal correlations and developed 
§ a correlation-based inversion (CBI) approach that optimizes over a reduced 

parameter space (Xu et al. 2019)

§ a fast multi-pixel radiative transfer (RT) modeling approach  

Three types of lower boundaries considered in correlation-based aerosol retrievals

Over ocean Over land Over cloud
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Principal component analysisAERONET products

Variance captured by PCs

Observation: aerosol parameters are 
highly correlated in nature but a few 
principal components (PCs) capture 
>85% temporal and spatial variance of 
aerosol properties.

Spatio-temporal correlation in aerosol properties

Aerosols in a 2000 km domain around AERONET Namibe site, Angola
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Correlations in aerosol properties
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2000 km domain around AERONET Fresno site, California

Aerosol parameters are highly 
correlated in nature but a few 
principal components (PCs) capture 
~85-90% temporal and spatial 
variance of aerosol properties.

Principal componentsGround (AERONET) aerosol products

Variance captured by PCs



Reconstructed fields from dominating PCs
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Reconstruction formula: x 𝑖 = �̅� 𝑖 + ∑'()
*+, 𝑥' 𝑖 for ith correlated aerosol property 

Reconstructed 
using 4 PCs
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Benefits of correlation based inversion

Assuming 1000 pixel retrieval

Number of retrieval parameters

Traditional inversion: fast parameter space increase as func. of number of pixels
Correlated inversion: slow parameter space increase as func. of number of pixels

Number of correlated 
parameters per pixel

Retrieval speed up

Number of correlated 
parameters per pixel

Ill-posedness mitigation

Condition 
number
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Correlation-based inversion features

Ø Reduces aerosol parameter space by retrieving 
principal components (PCs)
Total parameter space reduces by 2 magnitudes for an 
1000x1000 pixel image

Ø Builds in a few retrieval flexibilities, e.g. 
o retrieve PC weights and PC vectors simultaneously
o retrieve PC weights, but PC vectors fixed as informed 

by a priori analysis of reliable climatology
o start with correlation constraints and then relax them 

when approaching the solution
Ø Imposes multiple types of constraints to stabilize PC 

retrievals to ensure fast convergence to truth
Example: smooth aerosols spatial and spectral variations

Ø Allows climatology/transport model to inform retrieval
Ø Incorporate a PC based fast RT model
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ψ./012 = 3
4()

*56789

ψ:(𝐱4)

+ 𝛾?𝐯.𝚻/B0v

Cost function for multi-pixel 
data fit

Mutual orthogonality
constraint on PC vectors (v)

Zero-sum PC weight 
constraint (w)

+ 𝛾C𝐰.𝚶FGB/𝐰

State vector and objective function in CMPI

+ 𝛾𝟕𝐰.𝐔JKL0𝐰

Unity-norm PC vector 
constraint (w)

+ 𝛾)𝐱regular.𝛀(T,V,F)
BGWJ21B𝐱regular + 𝛾X𝐱regular.𝛀Y

BGWJ21B𝐱regular

Constraints on smooth spatial & spectral variations in 
regular parameter space (Dubovik et al. 2011)

State vector: x = [xcorrelated, xregular], with xcorrelated =[vmean, wpixel1-M, vPC1-N]

+ 𝛾Z[ 𝐰; 𝐯].𝛀(T,V,F)^/BBG210G_[𝐰; 𝐯]

Constraints on 
smooth spatial & 
spectral variations 
in correlated
parameter space 
(Xu et al. 2019)

+ 𝛾 [ 𝐰; 𝐯].𝛀Y
^/BBG210G_[𝐰; 𝐯]



Comparison to multi-pixel inversion w/o correlation
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Pixel-by-pixel comparison of 
AODs retrieved using 
correlated and non-correlated 
multi-pixel inversion approach 
shows consistency

Aerosol Optical Depth
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Retrieval practice
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Aerosol Optical depth Single scattering albedo
Ø Testing data acquired by RSP, 

SPEX airborne and AirMSPI
instruments during NASA 
multiple field campaigns

Ø Collocated data with 
AERONET sites adopted for 
retrieval validation

Credit: G. Fu & O. 
HasekampAirMSPI

SPEX RSP

Retrieval credit: 
Fu & Hasekamp

Retrieval credit: 
Fu & Hasekamp



Fast multi-pixel PCA-RT model
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Algorithm heritage: 
PCA-RT for hyperspectral 
RT modeling (Liu et al. 
2006; Natraj et al. 2007)

PCA-RT error (%) in multi-pixel 
TOA angular BRF in 7 bands

PCA-RT error in multi-pixel 
TOA angular DOLP in 3 bands

w: PC weights
(pixel-resolved)

v: PC vectors
(image-effective)

𝛿: perturbationY: pixel resolved 
atmospheric 
radiation field

x̄: field 
mean

Y(x p ) ≈ Y(x)+
Y(x +δ × v k )−Y(x −δ × v k )

2δ
wp,k +

Y(x +δ × v k )− 2Y(x)+Y(x −δ × v k )
2δ 2

wp,k
2⎡

⎣
⎢

⎤

⎦
⎥

k=1

NPC

∑

Xu et al., 2019



We developed a correlated-based inversion (CBI) approach that 
v capitalizes on the spatial and temporal correlation of aerosol properties 

• to reduce the aerosol parameter space by retrieving PCs
• to allow multiple types of constraints to impose to stabilize PC 

retrievals
• to enable a PCA-RT model for fast radiative transfer modeling

v CBI preliminary application to polarimetric observations achieves mean 
absolute errors ~0.015-0.03 for AOD and ~0.03-0.04 for SSA

v CBI application to OCO-2 data is targeted for an accuracy ~0.68km for 
aerosol layer height retrieval

v CBI is current under optimization for use by the next-generation 
polarimeters 
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Summary



v Adapting the correlation-based inversion approach to retrieve aerosol 
composition, more aerosol shape parameters and ocean constituent 
properties by combining observations and a priori analysis of other 
model and climatology observation in PC space

v Constituting new basic shapes for capturing retrieval parameter 
correlation and transform retrieval from regular parameter space to 
other types of linear/non-linear spaces 
Challenges: Mapping traditional a priori constraints used from regular 

parameter space to new spaces is non-trivial
v Seeking intrinsic relations between correlation-based retrieval and 

some machine learning approaches
v …
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Looking forward …



v Optimization approach

by J. Martonchik, P. Litvinov, O. Hasekamp, K. Knobelspiesse, S. Stamnes, M. 
Garay, J. Wang, W. Hou, X. Xu, etc.

v Radiative transfer modeling

by J. Chowdhary, P. Yang, A. Davis, X. Liu, V. Natraj, P. Zhai, etc.

v Validation data supply

by AERONET, RSP & SPEX airborne teams
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