Characterization of the aerosol mixture components on a base of multiwavelength lidar measurements

Igor Veselovskii^a, Philippe Goloub^{b,}, Qiaoyun Hu^b, Thierry Podvin^b, Boris Barchunov^a, Michael Korenskiy^a, Oleg Dubovik^b, Anton Lopatin^c, Zhengqiang Li^d

^aPhysics Instrumentation Center of General Physics Institute, Moscow, Russia
^bLaboratoire d'Optique Atmosphérie, Université de Lille-CNRS, Villeneuve d'Ascq, France
^cGRASP, Université de Lille-CNRS, Villeneuve d'Ascq, France
^dAerospace Information Research Institute, CAS

Motivation

• Study of characterization of aerosol microphysics on a base of miltiwavelengths lidar measurements started about 20 years ago D. Muller et al., 1999; I. Veselovskii et al., 2002

• The most practical configuration of Raman lidar is based on tripled Nd:YAG laser (3 β +2 α +1 δ). Typical uncertainties :

Volume	~ 20-30%
Effective radius	~20-30%
Real part of refractive index	± 0.05
Imaginary part (when Im>0.01)	~ 50%

• However, in many tasks composition of aerosol mixture should be known (organic carbon, black carbon, sulfates, dust, maritime)

• There are studies on aerosol classification (S. Burton), separation of fine and coarse fractions (A. Ansmann).

• To treat corresponding inverse problem we must be confident in properties of the components.

"Pure" dust properties basing on SHADOW campaign results in Senegal

AOD at 532 nm from AERONET and MERRA-2 model

SSA from AERONET at 440 nm and 675 nm in 2015

Lidar measurements on 1 and 24 April 2015

500

80

0.8

Variation of imaginary part at 675 and 440 nm from AERONET

AERONET

Correlation Δ Im and S₃₅₅/S₅₃₂

Lidar

Ratio S_{355}/S_{532} is sensitive to increase of dust absorption in UV

Averaged values of imaginary part in Sahel at 355 and 532 nm are 0.005 and 0.003 (Di Biagio et al., ACPD 2019)

Smoke

Absorption increases in UV due to BrC Lidar ratio depends on RH

MERRA-2 simulation for organic carbon. Im355 for dry particles: 0.048, 0.03, 0.02, 0.01

Separation of aerosol mixture

We can try to retrieve concentrations of 5 main aerosol components used in models.

Advantage

- Problem becomes over-determined (6 data and 5 unknowns)
- Spectral dependence of refractive index is accounted <u>Issues</u>
- Model can not cover all diversity of aerosols

Model based on AERONET observations (from GRASP group)

Biomass bu	irning	1.51-i0.02
Urban		1.4-i0.003
Urban poll	uted	1.47-i0.15
Dust	1.56-i0.	0021(0.0037)
Maritime		1.37-i0.0001

Parameters don't depend on RH

Two approaches for inversion

Simulation

Evaluation of algorithm stability for 10% errors

5 components

4 components (Maritime is excluded)

- Algorithm is stable for input noise
- Biomass Burning and Urban are difficult to separate

Components separation on 14 December 2015 in Senegal

LSM inversion

GRASP

Separation of aerosol components. 19 Jan. 2016, Senegal

LSM inversion

GRASP inversion

Absorbing "Urban Polluted" fraction is separated

Conclusion

Separation of aerosol components on a base of multiwavelength lidar measurements is possible. Account for RH is the next step.