

Bastiaan van Diedenhoven,

Ann Fridlind, Jerome Riedi, Brian Cairns, Andrew Ackerman

Funded by NASA ROSES Aqua-Terra 2013; Submitted to JGR

Large variability of ice properties

1 minute of Cloud Particle Imager data from the WB57 at ~ 11km on 8/8/07

Sensitivity of optical properties to shape

- Macro scale
 - 'habit'
- Meso scale
 - aspect ratios of components
- Distortion across scales
 - microscale roughness
 - Crystal complexity

van Diedenhoven, Springer Series in Light Scattering, 2018

Sensitivity of optical properties to shape

- 1. Meso scale
 - aspect ratios of components
- 2. Distortion across scales
 - microscale roughness
 - Crystal complexity
- 3. Macro scale
 - 'habit'

van Diedenhoven, Springer Series in Light Scattering, 2018

Sensitivity of optical properties to shape

- Meso scale:
 - aspect ratios
- Distortion
 - parameterized crystal distortion (Macke et al. 1996)

van Diedenhoven, Springer

Retrieval approach

- Observations: polarized reflectances at 865 nm within 120°-150° scattering angle
- Forward model: Geometric optics, Doubling-Adding, Rayleigh (cloud top height), here $\tau > 5$
- Fit parameters: aspect ratios and distortion of proxy hexagonal plates or columns
- **Derived**: ice asymmetry parameter of retrieved ice model

van Diedenhoven et al. 2012, 2013, 2014, 2016

Ice shape and asymmetry parameter from 2007 POLDER

- Filters applied (>84 million valid retrievals):
 - Goodness of fit
 - Optical thickness > 5
 - MODIS/POLDER phase flags + cloudbow 'liquid index' (van Diedenhoven et al., JAS, 2012)

Effective radius from MODIS C6 product

Asymmetry parameter

Correct r_{eff} for assumed ice model

$$r_{e,corr} = r_{e,C6} * \frac{(1 - g_{C6})}{(1 - g_{POLDER})})$$

Global variation of ice properties

Vertical variation of ice properties over Land

Vertical variation of ice properties over **ocean**

Vertical variation of effective radius

Ice growth by vapor deposition:

Mass growth rates approximately scale with

- saturation pressure e_{s.i}
- saturation ratio wrt ice S_i:

$$\frac{dm}{dt} \sim (S_i - 1) \times e_{s,i}$$

Ice supersaturation in clouds **increases** with decreasing temperature: parameterization by Korolev & Isaac (2006)

Ice saturation pressure decreases with decreasing temperature

Vertical variation of effective radius

Vertical variation of ice properties over Land

Vertical variation of aspect ratio

Ice growth by vapor deposition:

- Laboratory grown crystals show temperature variation
- Pronounced dip at ~-15°C or 258K
- Empirical fit by Chen & Lamb 1994; Hashino & Tripoli 2008

Vertical variation of aspect ratio

Ice growth by vapor deposition:

- Laboratory grown crystals show temperature variation
- Pronounced dip at ~-15°C or 258K
- Empirical fit by Chen & Lamb 1994; Hashino & Tripoli 2008

Vertical variation of ice properties over Land

Variation of ice crystal distortion

Variation of ice crystal distortion

Variation of ice crystal distortion & asymmetry parameter

Current ice optical models do not take into account distortion varying with size and temperature

Conclusions

- Variation of ice shape and size with temperature surprisingly consistent with simple vapor growth, despite many possible other ice processes
- Asymmetry parameter:
 - Global averaged g ~0.75 consistent with MODIS model
 - variation with size and temperature not represented in MODIS retrievals and commonly used radiation models
- Power of polarimetry for ice clouds studies:
 - Very robust filtering for super-cooled liquid clouds
 - Unique information on ice crystal shape and scattering properties
 - polarimetry+VIS/SWIR constrains ice cloud radiation: optical thickness, effective radius and asymmetry parameter
- Ice shape+size retrievals method can be applied to
 - POLDER+MODIS
 - Airborne RSP
 - future missions: 3MI, PACE polarimeters + Ocean Color Imager, A&CCP,
- Data files available: <u>https://osf.io/c7g58/</u>
 - compatible with existing POLDER-MODIS product files
 - currently 2007, but plans to process all 5 years of PARASOL in A-train