Polarized Optical Properties of Dust Aerosols: Lessons learned from modeling simulations and the Amsterdam-Granada Laboratory Measurements

Lei Bi, Wushao Lin, Ruirui Zong **Zhejiang University (ZJU) Oleg Dubovik** Universite Lille **Olga Muñoz** Instituto de Astrofísica de Andalucía (IAA), CSIC. **APOLO Workshop**, Lille, France November 5, 2019

Critical Issues in Developing Aerosol Models

- Tools: Accurate and efficient computational methods to compute the optical properties of non-spherical aerosol particles.
- Physics: Physical mechanism/interpretation on how particle microphysics affects electromagnetic wave scattering.
- **Constraints:** constrain **"suitable"** models for atmospheric radiative transfer simulations/applications

Invariant imbedding T-matrix

- Arbitrary shaped and inhomogeneous particles (flexibility)
- Analytical random orientation average (accuracy and efficiency)
- Particle size parameter up to geometric-optics domains (applicability)

Super-spheroidal Space

Volcanic ash

n=0.15

Campos-Ramos A, et al. Atmos. Environ., 2009, 43(39), 6159-Marcol Marcol Cel WD Kar Sodium chloride

Sea salt

Why more freedom is useful?

Stereogrammetry

volume, projected area, aspect ratio

(Image from Lindqvist, et al., 2014)

Laboratory Measurement

Schematic overview of the experimental light scattering apparatus (e.g., Amsterdam-Granada).

P₄₄ : A straight line

*These samples have been investigated in Merikallio et al., (2011).

·Concour

2 P ₄₄ :Concave					10^3
Sample <u>(11)</u>	Reff/µm	veff	Re(m)	Im(m)	$\begin{array}{c c} & & & & & \\ & & & & \\ 10^2 & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & &$
White clay	2.6	0.7	1.5-1.7	0.00001-0.001	
Green clay-Granada	2.3	1.1	1.5-1.7	0.00001-0.001	
Cosmic analogs(Calcite)	3.3	4.9	1.485-1.655	0	
Montmorillonite	2.8	1.2	1.52	0.001	
Red clay	1.5	1.6	1.5-1.7	0.001-0.00001	
Loess	3.9	2.6	1.5-1.7	0.001-0.00001	
Sahara	8.2	4.0	1.5-1.7	0.001-0.00001	0 45 90 135 180 0 45 90 135 180 Scatttering Angle(°) Scatttering Angle(°) Scatttering Angle(°) Scatttering Angle(°)
Olivine L	3.8	3.7	1.62	0.00001	imhomogeneity
Green clay-Amsterdam	1.55	1.4	1.5-1.7	0.001-0.00001	$\begin{array}{c} 10^{3} \\ \hline \\ 10^{2}$
Hematite	0.4	0.6	3.0	0.1-0.01	
Sahara sand (Libya)	124.75	0.15	1.5	0.004	$\begin{bmatrix} 10^{\circ} \\ 10^{-1} \end{bmatrix} \xrightarrow{\bullet} 0.25 \begin{bmatrix} \bullet & 0.4 \\ 0.2 \end{bmatrix}$
					$\begin{array}{cccccccccccccccccccccccccccccccccccc$

3 P₄₄ :Convex

Sample <u>(5)</u>	Reff/µm	veff	Re(m)	Im(m)
feldspar	1.0	1.0	1.5-1.6	0.001-0.00001
allende	0.8	3.3	1.65	0.001
Volcanic ash (Spurr Stop 33)	14.4	6.6	1.48-1.56	0.0018-0.02
Forsterite small	1.3	3.1	1.63	0
Fly ash	3.65	10.9	1.5-1.7	i0.001-0.00001

Only two measured elements P_{11} , P_{12}

Sample <u>(9)</u>	Reff/µm	V _{eff}	Re(m)	Im(m)
Cosmic analogs (Allende)	2.63	3.43	1.65	0.001
Cosmic analogs (DaG521M)	8.68	2.44	1.65	0.001
Cosmic analogs (DaG521S)	3.58	1.97	1.65	0.001
Cosmic analogs (Enstatite)	3.71	3.14	1.58	0.00001
Cosmic analogs (OlivineS)	3.29	1.04	1.62	0.00001
Cosmic analogs (FRO95002M)	3.92	2.72	1.65	0.001
Cosmic analogs (FRO99040M)	5.90	3.09	1.65	0.001
Cosmic analogs (FRO99040S)	3.68	1.73	1.65	0.001
Volcanic ash (EI Chichon)	3.2	5.4	1.5-1.6	0.001

Lin ,W., et al., Journal Geophysical Research: Atmospheres, 2019

Wavelength Dependence

Super-spheroid: equi-probable shape distribution Spheroid: power-law shape distribution

Super-spheroids are much better than spheroids to simulate the wavelength dependence of scattering matrix.

Super-spheroids with constrained roundness parameters appear to be much better than spheroids even though extreme aspect ratios of spheroids are considered.

Database

Refractive Index

m _i \m _r	1.30	1.33	1.35	1.40	1.45	1.50	1.53	1.55	1.60	1.65	1.70	1.75	1.80
10-7	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.2	· · · · · · · · ·	•••	• • • • • • •	· · · · · · · · · · · · · · · · · · ·	••••	
0.001	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.1	• • •	• • •	••••	• •	••	-
0.003	-	-	-	\checkmark	\checkmark	\checkmark	0.05	• • •	•••	••••	•••	•••	-
0.005	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	V Part						-
0.008	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	10.0 -	• • •	• • •		• •	•••	-
0.01	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	<u> </u>	• • •	•••		• •		
0.03	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				d	ust (from	n AERON	IET)
0.05	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	0.001 -	• • •	• • • •	••••	• • •	••	
0.1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	1.2	1.3	1.4	1.5 1. Real Part	6 1.7	1.8	1.9

Database

Shape Parameter											
Aspect ratio (a/c)	0.5	0.6	0.7	0.8	0.9	1.0	1.2	1.4	1.6	1.8	2.0
Roundness parameter (n)	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0

Size Parameter and Computational Method								
2πα/λ 2πc/λ	0.1~50/100	50~70	70~100	100~1000				
Method	II-TM	IGOM (II-TM)	IGOM (II-TM)	IGOM				

LiDAR Aerosol Classification

POLDER: Simulation VS Observation

From: https://ladsweb.modaps.eosdis.nasa.gov/

Dust Shortwave Absorption Impact

WRF-Chem

- Grid 36km, 35 Layers
- 2006/4/1-9/1
- Lin, Grell-Freitas, RRTMG, YSU, Noah
- uoc dust(shao2004)
- fdda

Strong absorption – weak absorption

Dust direct radiative effect (summer)

Summary

- Fundamental progress has been made to compute the optical properties of aerosol particles: T-matrix
- Due the technical advances, the aerosol modeling approach has been extended from the conventional models (spheres and spheroids) to current super-spheroidal models
- Extensive comparisons have been made between modeling simulations and the Amsterdam-Granada Laboratory Measurements.