

The DMSAT-1 mission: primary instrument - Polarimeter characteristics and its earth observation applications

Alya AlMaazmi - Remote Sensing Applications Engineer
Mohammed Bin Rashid Space Center (MBRSC)

GOVERNMENT OF DUBAI左

MOTIVATION

UAE DUSTY ATMOSPHERE

Dust storms occur frequently in UAE, they most often hit during the summer and times of turbulent weather.

Sandstorms typically contain silica crystals as well as viruses, bacteria, dust mites, fungi and even plant.
Can cause vital problems linked to health, economy and environment.
Space-based monitoring can supplement ground-based weather stations that are currently used for dust storm research.
Map atmospheric aerosols, including their sources and transport, and study their influence within UAE.

GOVERNMENT OF DUBAI

DMSAT-1

Dubai Municipality Satellite

-

Is a high-performance small microsatellite designed to perform multi-spectral multipolarization observations in visual and near-infrared bands, in addition to shortwave spectrum, for aerosol and greenhouse gas monitoring.

GOVERNMENT OF DUBAI

Instrument design to aid the investigation and fulfill mission objectives

Instrument Design

Polarimeter instrument

\square
High transitivity telescope with a focal length of 150 mm and focal-length-to-aperture ratio of 2.8.
Filter wheel used to divide the incoming light into three bands: 480-500 nm, 660-680 nm, and 860-880 nm.
A "p-s" polarizing beam splitter, generates two identical images at two different polarizations 0° and 90°
Kodak CCD detector at the focal plane.

Instrument Design

Spectral Bands and Polarization Measurements

Chosen based on the mission's scientific requirement of retrieving aerosols properties.
3 polarized bands with central wavelengths 490, 670 and 870 nm .
Each band has a polarization of 0° and 90°.
The DMSAT-1 Polarimeter instrument is designed to measure the linearly polarized Earth-reflected radiance only.

Instrument Design

Geometry and spatial resolution

Spatial resolution of the Polarimeter image is 43.8 m .
Swath width of $107 \times 38 \mathrm{~km}$.
Field of View (FOV) is 4.46 deg half diagonal, with an in-track look capability of less than 90° and an off-track look capability of 30°.

Operational Scenario

730 km Altitude, SSO 12:00 LTDN

Slewing maneuver at 7 different angles.

- Target observation at different reluctance and scattering angles.

Polarimeter Applications

Primary Polarimeter Instrument Applications

- Aerosol Optical Depth.
- Aerosol effective radius.
- Aerosol type PM 2.5.
- Aerosol type PM 10.

Secondary Polarimeter Instrument Applications

- Surface ALBEDO.
- Normalized Difference Vegetation Index (NDVI).
- Aerosol mass mixing ratio.

GOVERNMENT OF DUBAI

Polarimeter Applications

GRASP Algorithm for DMSAT-1 retrievals

GOVERNMENT OF DUBAI

GRASP

Polarimeter Applications

GRASP Algorithm for DMSAT-1 retrievals

INPUT	ALGORITHM	OUTPUT
WEB APP	$\begin{gathered} \text { GRASP } \\ \text { PROCESSING } \end{gathered}$	KEPLER VIEWER
User Input DMSAT-1 Image from processing	DMSAT-1 YAML and SDATA files, processing in Ubuntu using Python	Output format .CSV files, viewed in MBRSC Kepler Viewer.
	ubuntu®	

GRASP

Polarimeter Applications

GRASP Algorithm for DMSAT-1 retrievals

GRASP

Polarimeter Applications

GRASP Algorithm for DMSAT-1 retrievals

GRASP

Polarimeter Applications

GRASP Algorithm for DMSAT-1 retrievals

Polarimeter Applications

GRASP Algorithm for DMSAT-1 retrievals

GOVERNMENT OF DUBAI

Polarimeter Applications

GRASP Algorithm for DMSAT-1 retrievals

GRASP

GOVERNMENT OF DUBAI
*GRASP

Polarimeter Applications

GRASP Algorithm for DMSAT-1 retrievals
GRAS Algornm

MOHAMMED Bin Rashid space centre

Thank You
alya.almaazmi@mbrsc.ae

