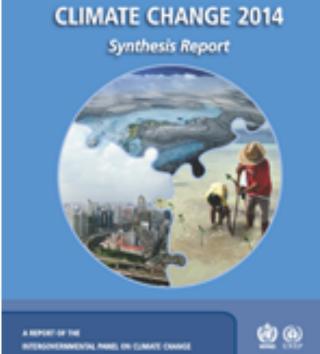
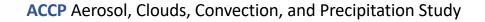
ACCP Aerosols, Clouds, Convection, and Precipitation Study

ACCP Programmatic Overview


Programmatic Approach and Progress the Preformulation Study for NASA's **Aerosols, Cloud, Convection and** pitation Observing System

Hal Maring NASA Headquarters


APOLO Conference University of Lille, France 4 – 7 November 2019

Scientific and Programmatic Basis

- Intergovernmental Panel on Climate Change Synthesis Report (2014)
- Decadal Survey (2017-2027)
 - Scientific Questions from Science Community
 - Most Important (Designated Observables DO)
 - Very Important
 - Important
- Aerosols DO
 - Aerosol properties, aerosol vertical profiles, and cloud properties to understand their effects on climate and air quality
 - Lidar(s) HSRL and/or backscatter and multi-channel/multiangle/imaging polarimeter flown together on the same platform
- Clouds, Convection & Precipitation DO
 - Coupled cloud-precipitation state and Clouds, dynamics for monitoring global Convection, and hydrological cycle and understanding Precipitation contributing processes including cloud feedback
 - Radar(s), with multi-frequency passive microwave and sub-mm radiometer

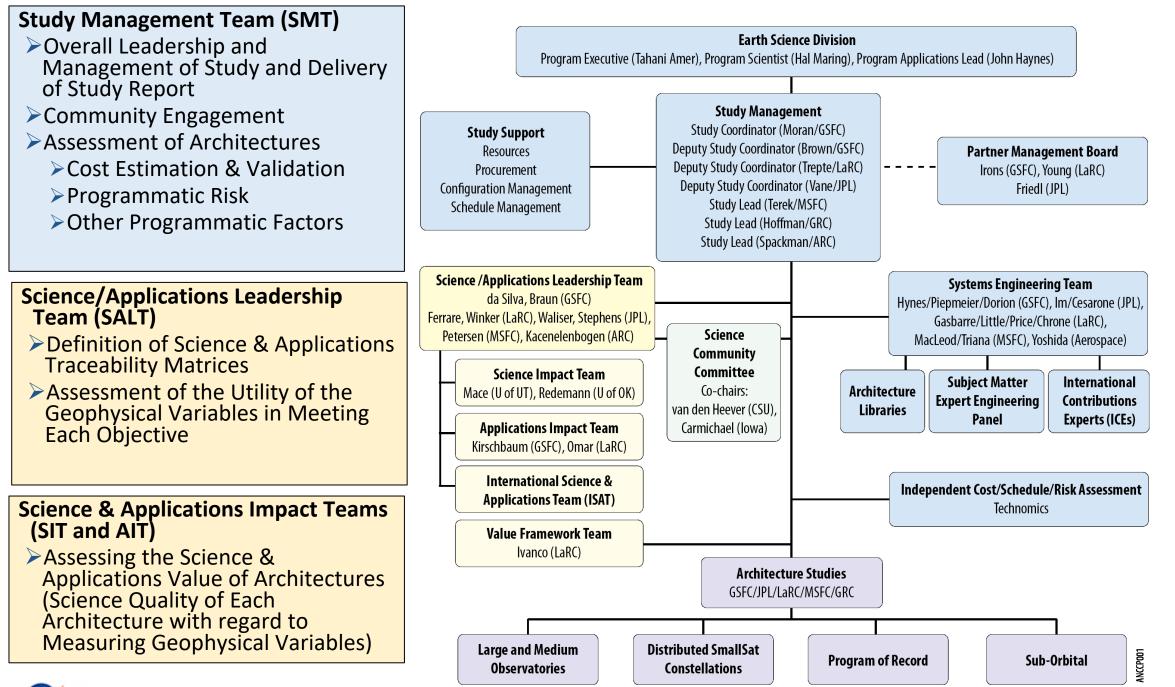
a result on climate chang

The National Academics of SCIENCES • ENGINEERING • MEDICINE

CONSENSUS STUDY REPORT

THRIVING ON OUR CHANGING PLANET

A Decadal Strategy for Earth Observation from Space



ACCP Study Origin and Overview

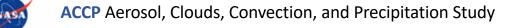
- HQ requested a Study Plan to address the Aerosol (A) and Clouds, Convection, and Precipitation (CCP) Designed Observables (DOs) called out in the 2017 Earth Science Decadal Survey (DS)
- Study Plan combining A and CCP objectives was submitted in July 2018 for a NASA HQ-sponsored, multi-center (GSFC, LaRC, JPL, MSFC, ARC, GRC, and others), 3-year pre-formulation study commencing 1 Oct 2018 and concluding with Study Report submission 30 Sept 2021
- The Study Final Report will provide Science, Technical, Management and Cost details for ~3 Candidate Observing Systems (OS)/Architectures that address the integrated A and CCP goals/objectives and are implementable
- Candidate OSs must take advantage of the Program of Record (PoR) and satellite remote sensing; they can include airborne remote sensing and in-situ observations, surface-based remote sensing and in-situ observations for science data and calibration/validation
- Implementable is defined as low risk for meeting cost cap and constraints
 - Funding assumptions: Integrated A and CCP program with initial \$800M funding wedge and Phase A start at end of FY22
 - Additional funding to follow for OS elements with later start to complete A and CCP objectives
 - Candidate architectures will span a range of costs and provide funding profiles

ACCP Study Team

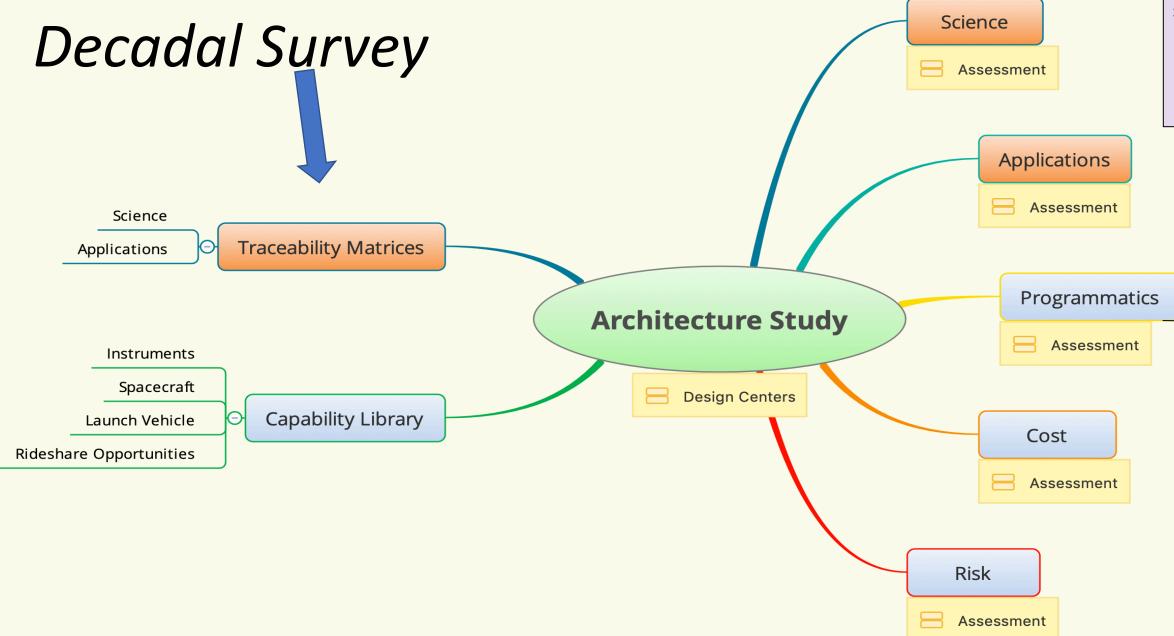
ACCP Aerosol, Clouds, Convection, and Precipitation Study

Science Community Committee

- Independent Assessment of SATM
- Independent Assessment of Science & Applications Benefit by Community of Users


Systems Engineering Team (SET)

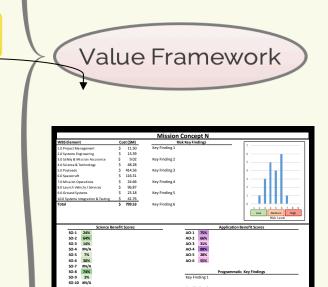
Definition of Architectures >Assessment of Architectures ➤Technology Readiness ➤Technical Risk

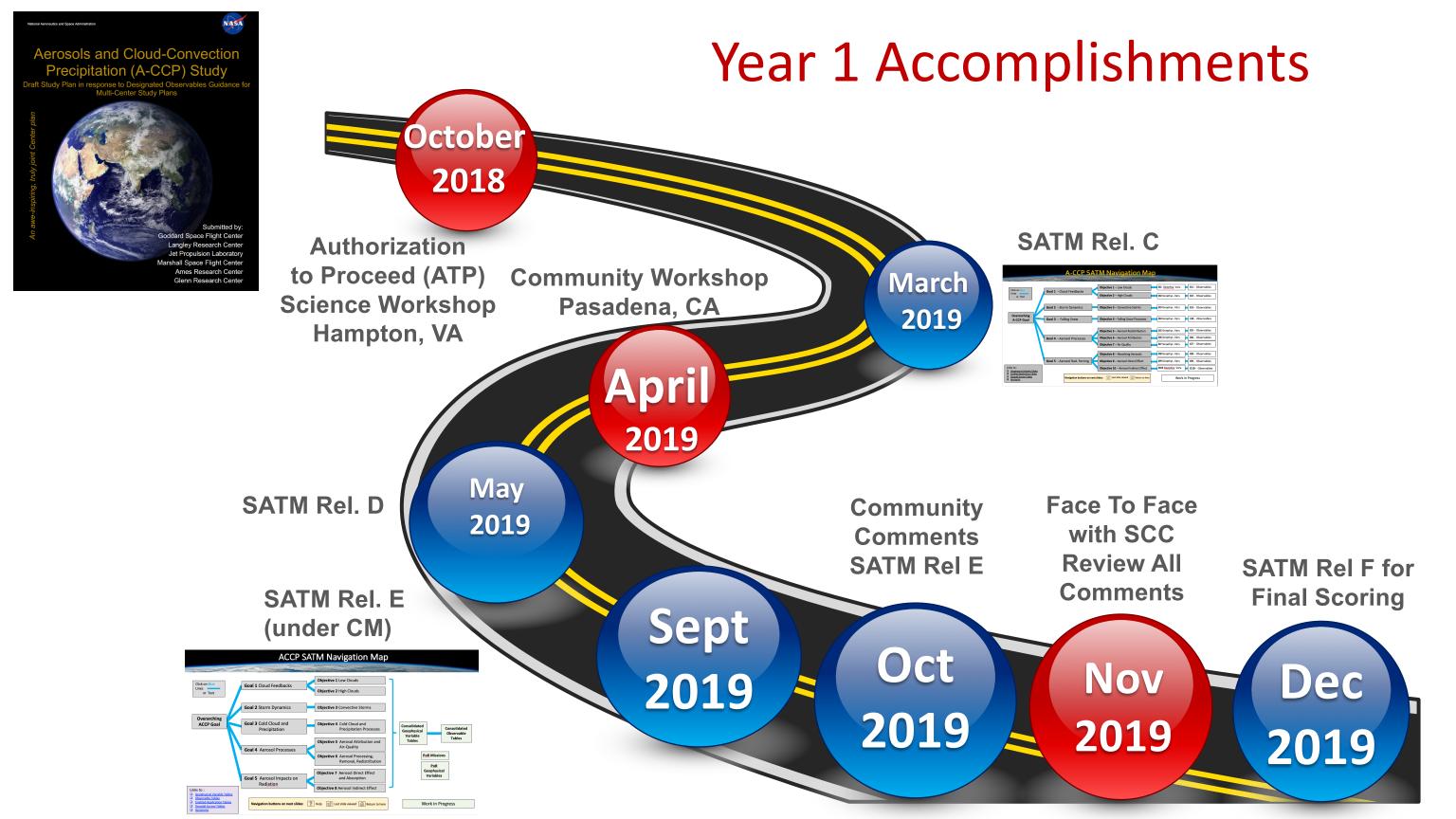

Value Framework Team Development of Standard and Systematic Approach to Sciénce, Applications, and Prográmmatic Evaluations of Architectures to facilitate **Down-Select Decisions**

International Engagement

- Bilateral meetings began in April 2019 with:
 - JAXA
 - CNES
 - CSA
 - DLR
- JAXA, CNES, CSA and DLR have been invited to participate in SALT, SCC, SIT, AIT and engineering; and are in various stages of engagement
- Architectures considered to date have included internationally contributed instruments to the maximum extent possible
 - JAXA precipitation radar and launch vehicle
 - CNES lidar detector and radiometer
 - CSA FAR IR spectrometer, limb sounder, and water vapor sensor
- DLR has expressed interest in participating in Sub-Orbital portion of the observing system and cal/val
- Continuing to investigate additional international participation (e.g. KNMI/SRON and KASI)

ACCP Study Approach




ACCP Aerosol, Clouds, Convection, and Precipitation Study

Science & Applications Activities

- Definition of Science & Applications Traceability Matrices
- Assessing the Science & Applications Value of Measurement Architectures

Consistent Evaluation Criteria

Year 1 Accomplishments & Year 2-3 Goals

- In <u>Year 1</u>, the Study Team has
 - Developed Science & Applications Traceability Matrix (SATM)
 - Held Community Workshop in Pasadena, CA with ~250 Attendees from NASA, Industry, Academia and ~5 International Participants (13 invited) to review SATM
 - Bilateral discussions with CNES, CSA, DLR and JAXA
 - Built extensive Instrument Library (>50 RFI submissions)
 - CNES, CSA, DLR and JAXA formally invited to participate in the study and engaged
 - Formulated numerous (>32) candidate Observing Systems (OS)/Architectures to address the combined DOs for A and CCP
 - 4 Architecture Construction Workshops (ACWs) completed at JPL (May, June, July) and GSFC (September)
 - Architecture Evaluation Workshop (AEW) completed at GSFC (August)
- In <u>Year 2</u>, the Study Team will
 - Complete more detailed designs of ~6 of the OS/Architectures
 - Evaluate science and applications benefits (via Value Framework)
 - Evaluate technical feasibility/risk of instrument capabilities (via Technology Readiness Assessments)
 - Evaluate cost and programmatic feasibility/risk (via Detailed Costing)
 - Include sub-orbital elements of Observing System (via Sub-Orbital Workshop(s))
- In Year 3, the Study Team will continue to develop ~3 OS/Architectures based on Value Framework assessments and refine the Science, Mission Implementation Technical, Management and Cost details with a recommendation to HQ for one to proceed to Mission Concept Review (MCR)/KDP-A before end of FY22 ACCP Aerosol, Clouds, Convection, and Precipitation Study

ACCP Significant Events (Near Term)

Qualitative Ranking of Science & Programmatics for ACW #1-3	Completed
Aerosol Instrument Performance Discussion	August 6, 2019 (
Architecture Evaluation Workshop (AEW) #1	August 7, 2019 (
Selection for CDC #1 (with HQ if desired)	August 7, 2019 (
DSIS #4 - Architecture Finalization for ACW #3 (Designing Sweet Instrument Suites)	August 8, 2019 (0
Splinter with <u>SBG</u> on Architectures and measurements	Sept. 6, 2019 (Co
	Sept. 17, 2019 (C
	October 2019 (TE
SATM Rev E Delivery	Sept. 16, 2019 (C
ACW #4 (Refinement @ GSFC MDL)	Sept. 16-20, 2019
1 st ACCP Quarterly Community Forum	Sept. 20, 2019 (C
Annual Review DO Study Teams for HQ	Sept. 24-25, 2019
Qualitative Ranking of Science Value & Programmatic ACW #4	Due NLT Oct. 31,
<u>Community Comments</u> SATM Rel E	Due Oct. 31, 201
SCC Independent Assessment SATM & Qualitative Scoring	
for Architectures	Due Dec. 4-5, 202
SATM Rev F (Final) Delivery	mid-Dec. 2019
AEW #2 and Selection of Architecture for CDC #2	mid-Dec. 2019
Quarterly Community Forums	Jan/Apr/July/Oct
<u>Sub-Orbital</u> Community Workshop #1	early March 2020

- (Completed) (Completed) (Completed) (Completed) Completed) Completed) ΓBS) Completed) 19 (Completed) Completed) 9 L, 2019 19 019
- ct 20

ACCP Significant Events (Longer Term)

CDC #1 GSFC MDL CDC #2 JPL Team-X CDC #3 MSFC CDC #4 LaRC CDC #5 GRC CDC #6 TBD Value Framework Assessments After Each CDC Independent Costing **Technology Readiness Assessments** Down-Select To ~3 Architectures **Final Recommendation** Final Report & Presentations

Week of 30 Sept and week of 7 Oct 14-16 & 28-30 Jan 2020 March 2020 May 2020 July 2020 Sept 2020 Oct 2019-Nov 2020 Oct 2019-Nov 2020 Oct 2019-Nov 2020 Feb 2021 Aug 2021 Sept 2021

Mission Study on Aerosol and Clouds, Convection & Precipitation

8 Science Objectives (see SATM for # Mapping) Traceable to the 2017 Decadal Survey

Convective (3) Storm Systems

Low Cloud Feedback (1)

Aerosol (6) Redistribution

Aerosol (7,8) Absorption, Direct & A Indirect Effects on Radiation

Aerosol Attribution & Air Quality (5)

ACCP Science

High Cloud Feedback (2)

Cold Cloud & Precipitation

11

Mission Study on Aerosol, **Clouds, Convection & Precipitation**

Climate Modeling

Aviation Industry and Safety

> **Operational Air** Forecasting

Aerosols and Precipitation Interaction

Inform Air Quality

Regulation

Storm Forecasting

and Modeling

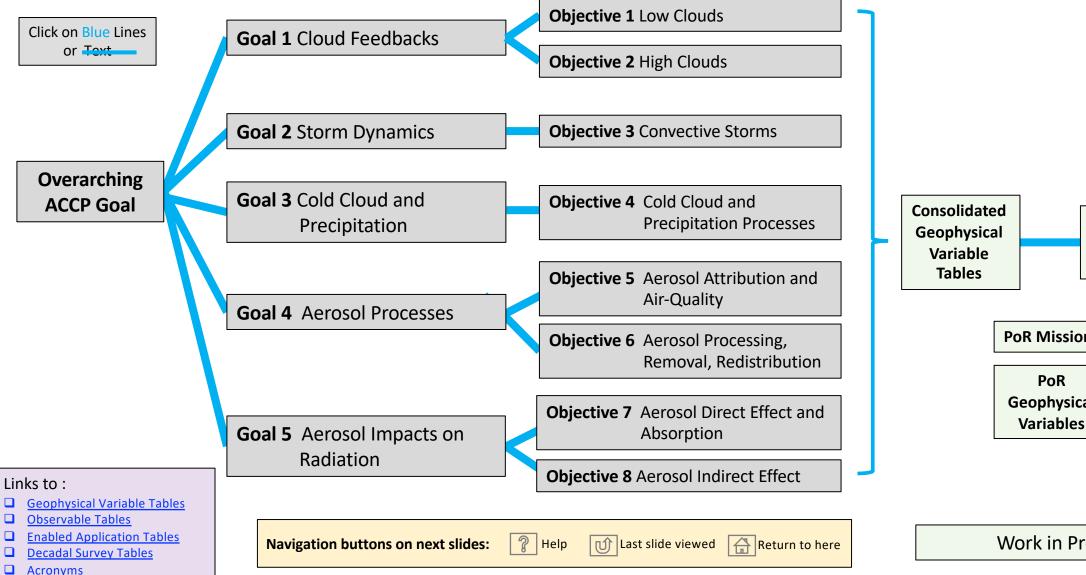
Human Health Studies & Health Risk Estimation

Energy Planning

Hydrologic Modeling

Health and Ecological Forecasting/Monitoring

Disasters


ACCP Applications

Improved Numerical Weather Prediction

Agricultural **Modeling &** Monitoring

ACCP SATM Navigation Map

Consolidated Observable Tables

PoR Missions

PoR Geophysical

Work in Progress

Program of Record: Examples

Mission	A	Orbit	Operating Period		Relevant Instruments		
Family	Agency	Or	Designed	Likely	Name	Channels	
Global Precipitation	NASA JAXA		2014-2019	2014-2032+/-5	Dual-frequency Precipitation Radar (DPR)	13.6 (Ku-band), 35.55 (Ka-band) [GHz]	Electronic scanning pl km at 13.6 GHz, 125 k Coverage: +/-66° latitu Spatial resolution: 5kn
Measurement (GPM)					GPM Microwave Imager (GMI)	10.65(V,H), 18.7(V,H), 23.8(V), 36.5 (V,H), 89.0 (V,H), 166.0 (V,H), 183.31+/-7(V), 183.31+/-3(V) [GHz]	Conical scanning imag km swath width; Coverage: +/-70° latitu Spatial resolution vario 10.65 to 4.4x7.2km at
<u>Global Change</u> Observation Mission- <u>Water</u> (GCOM-W1)	JAXA	LEO (Sun-synch, cross EQ at 1330LST; incline =98°;alt=700km)	2012-2017	2012-2027	Advanced Microwave Scanning Radiomet er v2 (AMSR2)	6.925(V,H), 7.3(V,H), 10.65(V,H), 18.7(V,H), 23.8(V,H), 36.5(V,H), 89.0(V,H) [GHz]	Conical scanning imag swath width; Coverage: Global onc Spatial resolution varie 6.925 to 3x5 km at 89
	ESA JAXA LEO (Sun- synch, cross EQ at 14:00LST.;incl ine=97°;alt=393k m; 92.5min period)			Atmospheric Lidar (ATLID)	355 [nm]	High Spectral Resolut Coverage: Global eve Spatial resolution: 30	
Earth Clouds, Aerosol and Radiation Explorer (EarthCARE)		synch, cross EQ at 14:00LST.;incl ine=97°;alt=393k m; 92.5min	All	~2021-2024 ?	u u u u u u u u u u u u u u u u u u u	94.05 [GHz]	Doppler capability; Na 35dB; Coverage: Global eve Spatial resolution: 750
							670-865 [nm] (VNIR), 1670-2210 [nm] (SWIR), 8.8-12.0 [μm] (TIR)
Green-house gas Observing Satellite (GOSAT-3)	JAXA	LEO (Sun-synch; polar orbit)	2022-2027	2022-2032	Advanced Microwav e Scanning Radiom eter v3 (AMSR3)	6.925(V,H), 7.3(V,H), 10.65(V,H), 18.7(V,H), 23.8(V,H), 36.5(V,H), 89.0(V,H), 166(V,H), 183 [GHz]	Frequencies will be li of 2 channel
Weather System Follow-on-Microwave (WSF-M 1, 2)	DoD	LEO (polar orbit)	2022-?	2023-2033	Microwave Imager	10-183 [GHz]	Frequencies

ACCP Aerosol, Clouds, Convection, and Precipitation Study

Notes

planar array with swath width of 245 5 km at 35.55 GHz; atitude every 5 days 5 km horizontal. 250 m vertical

nager at 53deg zenith angle with 850

atitude every 2 days aries with frequency: 19x32km at at 89-183.

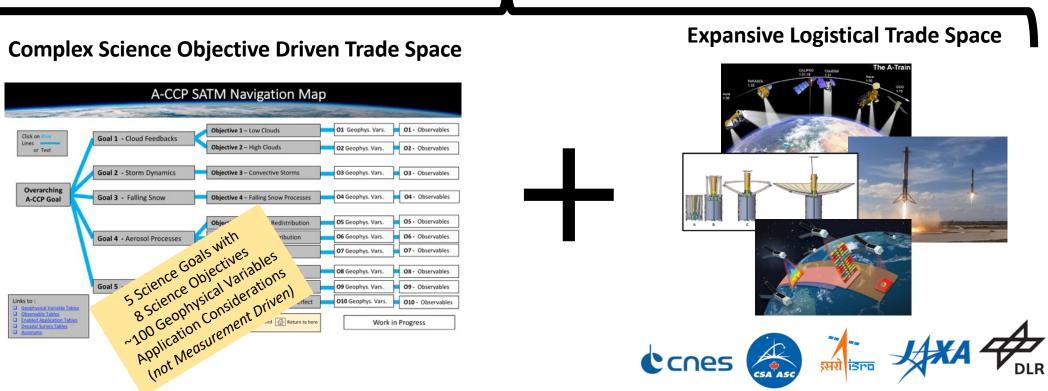
nager at 55° zenith angle with 1450 km

nce/day aries with frequency: 35x62 km at 89

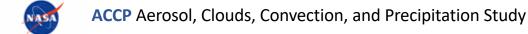
lution Laser at +/-3° of along-track; very 16days 30 m horizontal and 100 m vertical;

Nadir only; Minimum sensitivity of -

very 16days 750m horizontal x 400m vertical

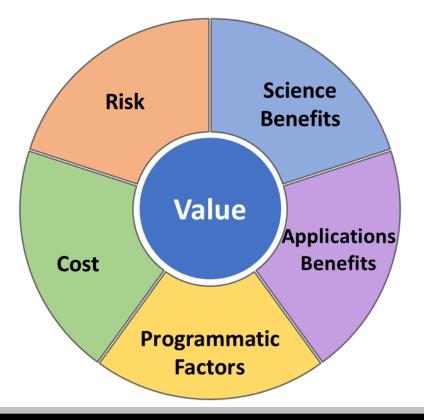

ng; 15 km swath very 8days(IR), 16days(SWIR); 500m pixel

e likely similar to AMSR2 with addition nels at higher microwave freq.


es will be likely similar to GMI

ACCP Needs a Value Framework

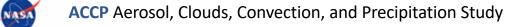
Cost-Capped/Cost-Constrained


ACCP -> large and complex in terms of science goals, payloads, measurement platforms, ... *Requires an objective framework for assessing relevant mission architectures*

Defining Value for the ACCP Study

Value: For ACCP, Value is the relative worth of science benefits, applications benefits, and programmatic factors with respect to cost and risk.

Benefits, cost, and risk are intentionally not rolled up into a single value score to avoid:


- Losing discriminators
- Combining uncertainty
- Anchoring cognitively on an initial value

Programmatic Anxiety

- Are we spending enough time, effort and money to do a good job, because it is unlikely we will get such another such opportunity in our professional lifetimes?
- Are we spending too much time, effort and money, because the time, effort and money spent working on ACCP is not spent doing other important tasks?
- Do we have a sufficiently diverse group of people involved to keep from missing something important?
- Do we have too many people involved such that we cannot make efficient progress?
- Can we reliably cost the ~3 recommended architectures?
- Can useful independent cost estimates be done?

Questions?

ACCP Aerosol, Clouds, Convection, and Precipitation Study

