

High spectral resolution lidar for aerosol characterization and combined lidar+polarimeter retrieval

Sharon P. Burton, Snorre Stamnes, Xu Liu, Kyle Dawson, Eduard Chemyakin, Richard Ferrare, Chris Hostetler NASA Langley Research Center, HSRL team

NASA Langley HSRL-2

- ACE Decadal Survey satellite prototype
- Nine field missions so far including ORACLES 1,2,3 and CAMP2EX
- Provides satellite calibration and validation
- Provides input to and validation for models
- 3 backscatter wavelengths (355, 532, 1064 nm)
- 2 extinction wavelengths (355, 532 nm)
- 3 depolarization wavelengths (355, 532, 1064 nm)
- Additional products
 - Aerosol optical depth/above cloud AOD
 - Boundary Layer height
 - Qualitative aerosol classification
 - Microphysics retrievals of effective radius, total concentrations (N,S,V)

Amount, size, morphology, composition,

Aerosol is a generic category for many different components

- Aerosols may warm or cool depending on type
- Aerosol-cloud interaction depends on type
- Aerosol transport and lifetime depends on type
- Effects on air quality and health depend on type

What do we need to know about aerosol?

Aerosol is a generic category for many different components

- Aerosols may warm or cool depending on type and altitude
- Aerosol-cloud interaction depends on type and altitude
- Aerosol transport and lifetime depends on type and altitude
- Effects on air quality and health depend on type and altitude

Why lidar?

Compared to passive aerosol sensors, lidar ...

- provides high resolution vertical profiles
- provides indicators of size, shape, composition
- works at night
- works equally well over bright surfaces works between broken clouds and near clouds

Lidar

- vertically resolved measurements
- multi-wavelength backscatter and extinction coefficients
- good accuracy for size distribution
- less accuracy for absorption

Polarimeter

- multiwavelength, multiangle
- polarized radiances
- good sensitivity to absorption
- limited information on vertical profile
- Lidar + Polarimeter
- vertically resolved profiles
- of size distribution, concentrations, and absorption

The combination of lidar + polarimeter measurements optimizes the information about the vertical profile of absorption properties

- Retrieval of ACCP geophysical variables
 - SATM includes *layer resolved* aerosol size distribution and absorption
 - Requires combined retrieval of polarimeter (sensitive to absorption) and lidar (vertically resolved)
- Assessment of measurement capabilities
 - Our retrieval architecture is adaptable to other instruments
 - Information content analysis allow quantitative assessment of ACCP candidate configurations
 - HSRL2 + RSP field campaign data allows us to compare performance against down-selected data (simulating less capable architectures)

High Spectral Resolution Lidar = independent measures of extinction and backscatter

High Spectral Resolution Lidar = independent measures of extinction and backscatter

HSRL "molecular" channel or "attenuation" channel:

Aerosol extinction

$P_m(r)r^2 = \left[\beta_m(r)\right] \exp\left\{-2\int_{\alpha}^{r} \left[\alpha_m(r') + \alpha_a(r')\right] dr'\right\}$

N Lat

E Lon

-19.3

10.5

- The filtered channel provides direct measure of AOT and extinction
- Extinction • measurement does not require modeled lidar ratio or constraint
- Little loss of accuracy from attenuation ٠
- No need for layer detection

-16.1

9.0

-14.6

10.5

-17.7

9.0

-13.3

7.7

-19.3

8.7

16

14

Mm⁻¹

500

200

100

50

20

10

Aerosol intensive parameters: size, shape, and composition

Aerosol intensive parameters, part 2

Vertical variability on September 20, 2016

Below vs. above 4.4 km:

- Some smoke depolarization
- Lidar ratio spectral ratio reverses
- Extinction Ångström exponent increases, suggesting smaller particles
- Backscatter Ångström exponent decreases
- Less relative humidity

Burton et al. 2018, Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES, *Applied Optics*, 2018

Is it "young" smoke?

Nicolae et al. 2013 suggests that 355 nm lidar ratio > 532 nm lidar ratio only for fresh smoke (< 1 day).

Characterization of fresh and aged biomass burning events using multiwavelength Raman lidar and mass spectrometry

D. Nicolae,¹ A. Nemuc,¹ D. Müller,^{2,3,4,5} C. Talianu,¹ J. Vasilescu,¹ L. Belegante,¹ and A. Kolgotin⁶

agree with similar studies carried out in different regions on the globe. Our study shows that the Ångström exponent LR_{532}/LR_{355} and the imaginary part of the refractive index can be used to clearly distinguish between fresh and aged smoke particles.

However: back-trajectories show that neither layer is younger than approximately 4 days. This is in agreement with ORACLES WRF-Chem airmass age modeling (Pablo Saide)

Optical properties from Mie modeling

- Monomodal log-normal distribution of spherical particles (simple case).
- Effective radius is varied.
- All other variables fixed: effective variance = 0.195, CRI = 1.49-i0.01325 (wavelength independent)
- As effective radius increases, and *nothing else changes*,
 - Extinction Ångström exponent decreases
 - Spectral ratio of lidar ratio reverses

Conclusion:

- A difference in the particle size alone between the two layers is sufficient to explain the unusual observations.
- Particles with $S_a(355) > S_a(532)$ are not limited to very young smoke.

Lidar aerosol microphysical retrievals

- $3\beta+2\alpha$ (i.e. 3 backscatter + 2 extinction) considered the minimum information necessary for microphysical retrievals (*Bockmann et al*, 2005)
- Lidar microphysical retrievals of effective radius and concentrations validated against in situ for 2012 TCAP mission (Müller et al., 2014, AMT) and 2013 DISCOVER-AQ (Sawamura et al., 2017, AMT)

Combined lidar + polarimeter retrieval

• And their uncertainties + a priori (chosen to have weak impact)

within uncertainty

Output:

Vertically resolved particle concentrations, effective radius, and absorption

Layer combination rules

- Lidar = vertically resolved ; polarimeter = column-only
- Retrieval state vector = aerosol state for each lidar level, but retrieving all with the radiative transfer is prohibitive
- Continuous layers with similar properties identified using HSRL aerosol typing
- Effective state variables represented by combining values within a layer of similar properties
 - Effective size distribution matches optical measurements by matching 1st, 2nd, 3rd moments
 - Effective complex refractive index is assumed by weighted averaging
- Combined analytic Jacobian describes combination of lidar and polarimeter parts, e.g.

Combined lidar + polarimeter retrieval

NA SA

Preliminary result 12 September 2016 ORACLES

Information content study

Inputs:

- Aerosol profiles of microphysics
 - for cases or "slices" of state space
 - here, simulated smoke
- Forward model
 - Mie theory (spherical particles), radiative transfer (Stamnes 2018)
- Measurement errors
- A priori uncertainties
 - Here: the full possible range taken by the microphysics variables (intended to have little impact)
 - However, the method also can accommodate using situational a priori from a climate model or aerosol typing

Burton, S. P., et al.: Information content and sensitivity of the 3β + 2a lidar measurement system for aerosol microphysical retrievals, AMT, 2016.

Propagated uncertainties (Rodgers 2000) $\hat{\mathbf{S}} = (\mathbf{J}^T \mathbf{S}_{\mathcal{E}}^{-1} \mathbf{J} + \mathbf{S}_{a}^{-1})^{-1}$

- **J** = Jacobian matrix = partial derivatives of measurements with respect to state = linearized forward model
- S_{ε} = measurement error covariance matrix
- **S**_a = a priori covariance matrix

Reduction of uncertainties by combined measurements

12 levels of simulated smoke

- Contribution of measurements to the reduction of error
- Propagated errors for lidar+polarimeter < lidar only < polarimeter < prior
- Quantitative results vary with aerosol microphysical state and assumed input errors
- Results for polarimeter depend on the number of levels used to represent the state

Prior

Polarimeter contribution $3\beta+2\alpha$ lidar contribution $3\beta+2\alpha$ lidar + polarimeter $2\beta+1\alpha$ lidar + polarimeter

Altitude

Propagated std dev, Fine mode frac

Propagated abs std dev, Real refindex Propagated abs std dev, Imag refindex

Summary

- High Spectral Resolution Lidar provides useful information about vertically resolved aerosol microphysical properties in the atmosphere that are not otherwise available
- HSRL measurements reflect sensitivity to vertically resolved amount, size, shape, and composition of aerosol
- The combination of lidar with polarimeter takes advantage of complementary information for a more complete vertically resolved aerosol microphysical retrieval
- A lidar + polarimeter combined retrieval algorithm is being developed at NASA Langley
- Information content analysis provides complementary understanding of the combined measurement sensitivity and retrieval capabilities
- Both the combined retrieval tool and the information content analysis tools are being used in ACCP analysis of instrument configurations