

The HARP family of Hyper-Angular Imaging Polarimeters and its applications from Aircraft and Space

J. Vanderlei Martins, Brent McBride, Anin Puthukkudy, Xiaoguang (Richard) Xu, Noah Sienkiewicz, Henrique M. J. Barbosa, Roberto Fernandez-Borda, Lorraine Remer, Oleg Dubovik, Pavel Litvinov

2nd APOLO Conference – Lille, France - 11/03-08/2019

HARP: Hyper-Angular Polarization

Wide FOV front lens followed by HARP Prism with Polarization Separation

AR('

JCET

NASA

- +/- 114 deg along track
- 94 deg cross track

К

Multiple Angles

UMB

JCET

EARTH #0 SPACE

NASA

WUMBC The HARP Polarimeter Family

Air HARP HARP CubeSat

JCET

- Frequent Ground calibration
- ~40m resolution
- Potential for HARP2 Cal/Val

Launched to ISS Nov 2nd 2019 Deployment Jan 2020

- 4 km resolution
- Limited data set: 1 snapshot/day
- No calibrator onboard/only vicarious

Launch: 2022-23

- Improved SNR
- Better calibration features
- ~3 km resolution
- Global coverage in 2 days

Hi-resolution concept

- Extended Wavelength range
- Improved SNR
- Full calibration features
- ~0.5km resolution

Image: Ward of the second s

- Global coverage in 2 days
- Synergy with Ocean color and SPEXOne polarimeters

HARP CubeSat

HARP launched Nov. 2nd 2019

ARC

EARTH *** SPACE INSTITUTE

F۱

JCET

NASA

imgflip.com

WUMBC CubeSats require deployment from ISS

HARP deployment planned for late Jan/2020

ES PACE

NAS

Example of other Cubesats being deployed from ISS

HARP Polarization Accuracy

UMB.

JCET

EARTH *** SPACE

NASA

R

Comparison with RSP

BC Comparisons with SPEX and MSPI

UMB

JCE

NAŚ

Data Processing Algorithms

2nd APOLO Conference – Lille, France - 11/03-08/2019

Level 1 HARP Image Processing Pipeline

- UMBC HIPP algorithm for HARP2
 - Produce Level 1beta NetCDF files based on raw data
 - Generates levels 1B and 1C images from level 1beta
 - 1A raw data frames
 - 1beta intermediate data processing file (not for distribution)
 - 1B gridded/calibrated/geolocated/topographically corrected images, viewing and solar geometry (all angles)
 - 1C common gridded data set between all PACE payloads
- Archived data include levels 1A, 1B and 1C.

Importance of Topography for

Geolocation

Actual (Lat, Lon) as compared with Nadir view

MB

JCET

EARTH *** SPACE

NASA

Importance of Topography for

ICE

NASA

Geolocation

EARTH MO SPACE

NASA

JCET

Implementation by Noah Sienkiewicz

JCET

NASA

Implementation by Noah Sienkiewicz

- Aerosol
 - GRASP algorithm is being used for the retrieval of aerosol load and microphysical properties
 - Successful retrievals from preliminary level 1 data sets
 - Currently running on reprocessed level 1 including topographical correction
- Surface properties
 - Sub-product from GRASP Aerosol Retrievals
- Cloud
 - Parametric retrievals of cloud effective radius and variance at the pixel level

WUMBC EST EATHER REAL

AirHARP Aerosol retrievals from ACEPOL

2017-11-09T19:30:55-RGB-Nadir

More Details later on Anin Puthukkudy's presentation tomorrow (paper in preparation)

AirHARP cloud retrievals

AMTD 2019

Spatial distribution of cloud droplet size properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) measurements

Brent A. McBride^{1,2,3}, J. Vanderlei Martins^{1,2,3}, Henrique M.J. Barbosa⁴, William Birmingham^{2,3}, and Lorraine A. Remer^{2,3}

More on Brent Mcbride's Poster

AMTD 2019

Spatial distribution of cloud droplet size properties from Airborne Hyper-Angular **Rainbow Polarimeter (AirHARP) measurements**

Brent A. McBride^{1,2,3}, J. Vanderlei Martins^{1,2,3}, Henrique M.J. Barbosa⁴, William Birmingham^{2,3}, and Lorraine A. Remer^{2,3}

More on Brent Mcbride's Poster

NAS

WIMBC AirHARP BRDF and BPDF Retrievals

DOLP (440,550,670)

0° Reflectance

2nd APOLO Conference - Lille, France - 11/03-08/2019

More on Richard's Xu Poster

Oral: Wed 11:00– 11:15 - Anin Puthukkudy

Retrieval of aerosol properties from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) observations during the 2017 ACEPOL campaign

JCET

Posters: Thu 14:00-15:40:

• Section 5 - Xiaoguang Xu, et al.

Angular distribution of **total and polarimetric land surface reflectance** measured by AirHARP

• Section 7 - Brent A. McBride et al.

Spatial distribution of **liquid water cloud droplet** size properties retrieved from Airborne Hyper-Angular Rainbow Polarimeter (AirHARP) observations • HARP CubeSat launched to ISS 11/2/19 – release for indepent data collection: late January 2020.

Summarv

- HARP2 development is going very well
- First version of the HIPP level 1 processing system has been applied to AirHARP data and is currently under testing by the PACE SDS group at Goddard
- GRASP has been successfully applied to AirHARP level 2 Aerosol processing paper in preparation (Anin Puthukkudy)
- Cloud retrievals have been successfully performed with AirHARP data and are currently under review on AMTD paper (McBride et al. 2019)
- BRDF/BPDF Surface studies are underway with AirHARP data (Richard Xu).