Validation and Performance Assessment of the Chinese First Multi-angle Polarimetric Satellite Sensor DPC/GF-5

Zhengqiang Li

Inst. Rem. Sen. & Digital Earth - CAS, China

Thanks to : Anhui Inst. Opt. Fine Mech. – CAS, China Shanghai Acad. Spaceflight Tech., China China National Space Administratives

Lille, France, 4-7 Nov 2019

Contents

- **1.** Introduction of the GF-5 mission
- **2.** Validation of preliminary data products
- **3. Assessment of DPC scientific results**
- 4. Future perspectives

GF-5: Flagship Satellite of GaoFen Program

Six payloads onboard GF-5:

- ✓ Advanced Hyperspectral Imager (AHSI)
- Visual and Infrared Multispectral Sensor (VIMS)
- Greenhouse-gases Monitoring

Instrument (GMI)

- Environment Monitoring Instrument
 (EMI)
- Directional Polarization Camera (DPC)
- Atmospheric Infrared Ultra- spectral
 Senor (AIUS)

https://doi.org/10.1016/j.jqsrt.2018.07.003

Launched successfully on 9th May, 2018

Overpass time: ~13:30 local time

GF-5 satellite orbital map (Revisit: 2 days)

Directional Polarization Camera (DPC)

DPC is designed to detect the properties of aerosol, cloud, water vapor as well as ocean and land properties.

Band & polarization configuration

Parameter Value Baffle Instrument FOV $\pm 50^{\circ}$ (across/along-track) Spatial res. (km) 3.3 Ultra-wide Lens Swath width (km) 1850 Multi-angle ≥ 9 Step Motor 512×512 Image pixels Spectral band (nm): 443, 490 (P), 565, 670 (P), 763, 765, P for polarization 865 (P), 910 Filter & Polarizer 0°.60°.120° Polarized angle Wheel Stokes parameters I, Q, U **CCD** Array Rad. Cal. Error ≤ 5% **Readout Circuit** ≤ 0.02 Pol. Cal. Error Board Band width (nm) 20, 20, 20, 20, 10, 40, 40, 20

Optical head of DPC/GF-5

Li, Hou et al., JQSRT, 2018, doi: 10.1016/j.jqsrt.2018.07.003

First Image of DPC — 10th May, 2018

True-color image of DPC (intensity) (North Africa - Mediterranean)

Polarization image of the cloud rainbow (North America)

Global map on 27th May, 2018

Xie et al., Aerospace Shanghai, 2019, doi: 10.19328/j.cnki.1006-1630

Data products

Levels	Name	Description
Lev 0	Raw data	DN value
Lev 1	Radiance	Intensity reflectance (I) at TOA
Lev 1	Polarized Radiance	Stokes parameter (Q and U) at TOA
Lev 2	Cloud Mask	Cloud-cover index over land and ocean
Lev 2	AOD (Land)	Light extinction (optical depth) of total aerosol over cloud- free land
Lev 2	AOD _f (Land)	Light extinction (optical depth) of fine-mode aerosol over cloud-free land
Lev 2	AOD (Ocean)	Light extinction (optical depth) of total aerosol over cloud- free ocean
Lev 2	AOD _f (Ocean)	Light extinction (optical depth) of fine-mode aerosol over cloud-free ocean
Lev 2	Water vapor	Columnar mass concentration of water vapor (unit: g/cm ²)
Lev 2	Cloud Optical Depth	Light extinction (optical depth) of cloud
Lev 2		

Contents

- **1.** Introduction of the GF-5 mission
- **2. Validation of preliminary data products**
- **3. Assessment of DPC scientific results**
- 4. Future perspectives

2.1 Rayleigh Calibration over Ocean

Method (In-orbit vicarious calibration):

- Selection of clean oceanic region
- Match of multiple data sources (AOD, O₃, chl, Wind, ...)
- Radiative transfer modeling of TOA radiance
- Calculation of calibration coefficients

Radiance Validation vs. Pre-launch

 $STD = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{I_{\text{mea},i}}{I_{\text{cal},i}} - A_{k}^{'}\right)^{2}} \qquad A_{k}^{\phi} = \frac{1}{N} \sum_{i=1}^{N} \frac{I_{\text{mea},i}}{I_{\text{cal},i}}$

- Correlation coefficients of I_{meas}
 and I_{cal} at 4 short bands over
 0.99
- Standard deviation (STD) less than 3%
- Calculated TOA radiances of Rayleigh scattering using 6S code have a great agreement with DPC measurements

Qie et al., in preparation, 2019

2.2 Sunglint for Polarization Calibration

Method:

- Transfer coefficients of Rayleigh bands to longer bands (select a reference band, e.g. 565 nm)
- Selection of data (strict sunglint angle and WS condition)
- Radiative transfer calibration of sunglint region

Polarization Validation vs. Pre-launch

- Degree of Linear Polarization (DoLP) over sun-glint region changes from ~0.2 to ~0.8
- DoLP calculated at 3 bands (490, 670, 865) agrees with pre-launch calibration with linear slope varying from 1.02-1.07.

$$SE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(DOLP_{mea,i} - DOLP_{cal,i} \right)^2}$$

Qie et al., in preparation, 2019

2.3 Retrieval of Fine Mode AOD (AODf)

Polluted case over China

Clean case over Australia (Bright Surface)

0.60

0.30

0.00

Validation of AOD_f vs. AERONET & SONET

Global AOD_f retrievals of DPC vs. AERONET/SONET data:

- within EE: 260/272 sites
- without EE: 12/272 sites

Correlation coefficient of satellite retrievals and ground-based data is 0.82, with about 77% data less than EE ($0.05+15\%AOD_{f}$)

Contents

- **1.** Introduction of the GF-5 mission
- **2.** Validation of preliminary data products
- **3. Assessment of DPC scientific results**
- 4. Future perspectives

3.1 City Pollution: Higher Resolution

 AOD_f with 3.3km spatial resolution by DPC/GF-5, while right panel shows the official AOD_f with 18.5km spatial resolution by POLDER/PARASOL.
 The high spatial resolution AODf products can clearly show the local details of pollution distribution.

Spatial resolution is increased by about 6 times!

3.2 Correlation between AOD_f and PM_{2.5}

- There is a good correlation between retrieved AOD_f and ground monitoring PM_{2.5} in Beijing.
- > Correlation results show good potential of DPC for quantitative estimation of air pollution fine particulate $PM_{2.5}$.

3.3 Significant pollution reduction in China

- The degree of pollution in eastern China has improved significantly from the peak of November 2011, especially in the southeastern coastal areas;
- The fine particle aerosol content in northern China is still high and needs further control and improvement.

POLDER/PARASOL (2011)

DPC/GF-5(2018)

3.4 Rapidly increased pollution in India

Compared with 2018 in 2011, India showed significant pollution growth, reflecting the increase in human activities such as increased industrial and agricultural emissions.

POLDER/PARASOL (2011)

DPC/GF-5(2018)

3.5 Dense Fire Activities in Center Africa

POLDER/PARASOL (2011)

DPC/GF-5(2018)

The changes in AODf in central Africa are mainly affected by factors such as natural biomass burning and forest destruction.

3.6 Global AOD_f distribution vs. Mortality Map

Contents

- **1.** Introduction of the GF-5 mission
- **2.** Validation of preliminary data products
- **3. Assessment of DPC scientific results**
- 4. Future perspectives

Challenge: Satellite-derived PM_{2.5} map

 Polarimetric sensor (DPC) results show interesting difference with previous PM_{2.5} map

But AOD_f itself is not the PM_{2.5}

New approach for PM_{2.5} Rem. Sen.

Zhang Y., and Li ZQ.*, 2015, Remote Sensing of Atmospheric Fine Particulate Matter (PM2.5) Mass Concentration near the Ground from Satellite Observation, *Remote Sensing of Environment*, 160, 252-262.

Future: polarization constellation

- Series polarimetric satellites design and demonstration
- Polarization remote sensing of atmospheric, terrestrial and ocean parameters
- National civil space infrastructure common application support platform

Polarization CrossFire (PCF) Suite will focus direct measure PM_{2.5} (2020)

Conclusion

- **1.** The in-orbit calibration indicates that DPC works well with expected performance.
- 2. The aerosol data validation shows that key parameters can be retrieved from DPC.
- 3. Scientific highlights obtained over bright city surface, east China, India, Africa and over the world.
- 4. The DPC provide a test bad for a further polarization constellation.

lizq@radi.ac.cn

Thank you for your attention