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ORACLES: ObseRvations of Aerosols 
above Clouds and their intEractionS

NASA Earth venture airborne mission to 
study aerosols above clouds where this 
frequently occurs: in the S.E. Atlantic ocean
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INTERACTIONS

From July through October, smoke from biomass-
burning (BB) fires on the southern African sub-
continent is transported westward through the 

free troposphere over one of the largest stratocumulus 
cloud decks on our planet (Fig. 1). BB aerosol (smoke) 
absorbs shortwave radiation efficiently. This funda-
mental property implicates smoke within myriad 
small-scale processes with potential large-scale im-
pacts on climate that are not yet well understood. 
A coordinated, international team of scientists from 
the United States, United Kingdom, France, South 
Africa, and Namibia will provide an unprecedented 
interrogation of this smoke-and-cloud regime from 
2016 to 2018, using multiple aircraft and surface-
based instrumentation suites to span much of the 
breadth of the southeast Atlantic.

!e scienti"c motivations are many. Smoke warms 
the atmosphere, in contrast to the climate cooling 
provided by the re#ected sunlight from the extensive 
low clouds residing mostly below the smoke layer. 
Yet the low clouds also respond to the presence of 
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the smoke in counterintuitive ways that can either 
strengthen or weaken the low cloud deck. Smoke 
can stabilize the atmospheric temperature pro"le by 
warming the free troposphere and cooling the surface 
below. !e stabilization strengthens the low cloud 
deck, so that the net smoke-plus-cloud e$ect is an 
enhanced cooling. !is e$ect is thought to dominate 
the low-cloud response, because space-based lidar 

AFFILIATIONS: ZUIDEMA—University of Miami, Miami,  
Florida; REDEMANN—NASA AMES Research Center, Moun-
tain View, California; HAYWOOD—University of Exeter, 
Exeter, United Kingdom; WOOD—University of Washing-
ton, Seattle, Washington; PIKETH—North-West University, 
Potchefstroom, South Africa; HIPONDOKA—University of 
Namibia, Windhoek, Namibia; FORMENTI—Laboratoire Inter-
universitaire des Systemes Atmospheriques, Creteil, France
CORRESPONDING AUTHOR: Paquita Zuidema,  
Rosenstiel School of Marine and Atmospheric Science,  
University of Miami, Miami, FL, 33149
E-mail: pzuidema@rsmas.miami.edu

DOI:10.1175/BAMS-D-15-00082.1

©2016 American Meteorological Society

FIG. 1. During September, 600-hPa winds escort the 
biomass burning aerosol (optical depth in warm colors) 
emanating from fires in continental Africa (green to 
red, 50–310 fire counts per 1° box) westward over the 
entire South Atlantic stratocumulus deck (cloud frac-
tion in blue contours). The inset, a 6°S–17°S latitude 
slice, highlights the subsiding aerosol layer and deepen-
ing cloudy boundary layer farther offshore, increasing 
opportunity for direct smoke–cloud interactions. Main 
figure is based on MODIS 2002–12 data and the ERA-
Interim Reanalysis; inset is based on the space-based 
Cloud Aerosol lidar with Orthogonal Polarization 
(CALIOP) and CloudSat 2006–10 data. Henties Bay is 
approximately 100 km north of Walvis Bay; other main 
deployment sites and Sao Tome are indicated.

Zuidema, P., Redemann, J., Haywood, J., Wood, R., 
Piketh, S., Hipondoka, M. and Formenti, P., 2016. 
Smoke and clouds above the southeast Atlantic: 
Upcoming field campaigns probe absorbing aerosol’s 
impact on climate. Bulletin of the American 
Meteorological Society, 97(7), pp.1131-1135.



The SE Atlantic ocean has: 
persistent clouds (due to upwelling)

+ massive smoke aerosol loads
= lots of Above Cloud Aerosols
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informs us that much of the BB aerosol resides above 
the cloud deck (Fig. 1). In contrast, if the smoke mixes 
directly into the cloud layer, warming provided by the 
smoke could reduce the relative humidity and help 
dissipate the cloud. Changes in the amount of aerosol 
nucleating the clouds also alter the cloud microphysics 
and the clouds' likelihood of producing rain. Other 
e!ects exist, for example, from the moisture associated 
with the aerosol layer, while further e!ects may still 
remain to be discovered. At a larger scale, the change 
in atmospheric warming from the smoke a!ects the 
neighboring precipitation distribution. "e smoke’s 
in#uence on the surface energy budget ultimately 
a!ects the equatorial climate and its variability through 
the trade winds, and changes the energy distribution 
between the Northern and Southern Hemisphere.

The complexities of the southeast Atlantic 
climate are not currently well captured by models 
(Fig. 2). The spatial and vertical distribution of 
aerosols must be modeled well, along with the 
aerosols’ capacity to absorb shortwave radiation—
the single-scattering albedo. Equally important to 

capturing the aerosol’s direct radiative effect is the 
ability to accurately represent the underlying low-
cloud deck. Smoke overlying a bright cloud will 
darken the scene when viewed from space, whereas 
smoke overlying a dark ocean will brighten the 
scene. Thus, the ability to represent the low-cloud 
albedo, and in turn the distribution of cloud 
properties, with and without smoke present, is 
critical to modeling the regional and (by extension) 
global climate. Climate change projections 
for Africa indicate strong future warming and 
changing precipitation patterns; increases in the 
variability of the rainfall have strong implications 
for agriculture in the arid regions.

Basic aspects of the meteorology, such as the 
trade winds and free-tropospheric easterlies, reveal 
a strong coupling between the atmosphere, ocean, 
and land neighboring the southeast Atlantic. For 
example, the deep land-based anticyclone over 
southern Africa encourages the recirculation of 
o!shore smoke back to the continent, at times from 
long distances. Many open questions remain, and 

FIG. 2. Modeled Aug–Sep direct aerosol radiative forcing in (a) individual AeroCom models ordered by their 
regional- and annual-average difference from the (b) ensemble mean indicating the regional hotspot for BB 
aerosol forcing over the southeast Atlantic. (c) indicates the large diversity in the models’ cloud fraction. The 
cloud fraction helps determine if the aerosol shortwave absorption influences the climate more than the aerosol 
scattering. More model details can be found in Stier et al. (2013).

Multi-angle polarimetry is the only 
available remote sensing technique that 
can simultaneously retrieve cloud and 
aerosol (absorption) properties

MASSIVE 
intra-
model 
variability

From Zuidema, P., Redemann, J., Haywood, J., Wood, R., Piketh, S., Hipondoka, M. and Formenti, P., 2016. Smoke and clouds above the southeast Atlantic: Upcoming field campaigns probe 
absorbing aerosol’s impact on climate. Bulletin of the American Meteorological Society, 97(7), pp.1131-1135.



• Radio-polarimetric and in situ observations of 
radiation, aerosol & cloud microphysics.

• 3 campaigns with P-3 (2016-2018), 1 with ER-2 
(2016)
2016: 15 P-3 and 12 ER-2 flights (Namibia)
2017: 13 P-3 flights (Sao Tome)
2018: 15 P-3 flights (Sao Tome)

• Coordinated with CLARIFY, LASIC, AEROCLO-sA
• Involves 6 NASA centers, 10 universities
• Establishes 2 new AERONET sites (1 Namibia & 

Angola), many other central African sites re-
established simultaneously

• 5 yr total duration, 2014 - 2019
• Includes LES, WRF-Chem, and GEOS-5 modeling
• features 50% routine flights to facilitate model-

relevant observations (for regional & global models)

P-3: Profiling aircraft 
2016, 2017 & 2018

ER-2: High-flying 
2016 only

Aerosol-radiation-cloud interactions over the SE Atlantic
ORACLES Implementation

Science Questions
Q1: What is the direct radiative effect of the African biomass 
burning (BB) aerosol layer in clear and cloudy sky conditions 
over the SE Atlantic?
Q2: How does absorption of solar radiation by African biomass 
burning (BB) aerosol change atmospheric stability, circulation, 
and ultimately cloud properties?
Q3: How do BB aerosols affect cloud droplet size distributions, 
precipitation and the persistence of clouds over the SE Atlantic?

Instrument Aircraft Measurements
SSFR P-3 Solar flux, Irradiance

ER-2
4STAR P-3 Aerosol Optical Depth, H2O

APR3' P-3

Radar Reflectivity, Linear 
Depolarization Radar, Doppler 
Velocity

AMPR P-3 Brightness Temperature

HIGEAR P-3

Particle Absorption, Cloud 
Condensation Nuclei, Particle 
Scattering, Aerosol Size 
Distribution, Black Carbon

COMA P-3 CO, CO2, H2O

UND-2DS P-3
SPEC Two-Dimensional Stereo 
Optical Array Probe

UND-CIP P-3 DMT Cloud Particle Imager

UND-HVPS P-3
SPEC High Volume Precipitation 
Spectrometer Version 3

UND-CAS P-3 DMT Cloud Aerosol Spectrometer

UND-PCASP P-3
DMT Passive Cavity Aerosol 
Spectrometer

KING P-3

PDI P-3
Flight Probe Dual Range Phase 
Doppler Interferometer Data

RSP P-3 Polarimetric Imagery
ER-2

TAMMS P-3

Aircraft 
position, Temperature, Pressure,
H2O

Water 
isotopes P-3 Water Vapor Isotopes
AirMSPI ER-2 Polarimetric Imagery
eMAS ER-2 Imagery

HSRL2 ER-2

Aerosol Depolarization 
Ratio, Aerosol Scattering 
Ratio, Aerosol 
Backscattering, Aerosol Extinctionhttps://espo.nasa.gov/oracles



Research Scanning Polarimeter (RSP)
VIS-SWIR (9 channel) multi-angle (~150 views)
highly accurate (𝜎DoLP < 0.0015) along track scanner
PI: Brian Cairns





ORACLES: 
ER-2 + P-3, in 
Walvis Bay, 
Namibia

2016



ORACLES: 
P-3 in São Tomé

2017

AEROCLO-sA
F20 in Walvis 
Bay, Namibia

CLARIFY
Bae-146 in 
Ascension 
Island



ORACLES: 
P-3 in São Tomé

2018



How do polarimetric algorithms work?
Retrieval of liquid cloud droplet size 
distribution goes back a long way…

GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO.11, PAGES 1879-1882, JUNE 1, 1998 

Cloud droplet effective radius from spaceborne polarization 
measurements 

Fran9ois-Marie Br•on 
Laboratoire de Mod61isation du Climat et de l'Environnement, Commissariat • l'Energie Atomique, Gif sur Yvette, 
France 

Philippe Goloub 
Laboratoire d'Optique Atmosph6rique, Universit6 des Sciences et Techniques de Lille, Villeneuve d'Ascq, France 

Abstract. The spaceborne POLDER instrumen•t provided the 

first quantitative measurements of the Earth reflectance 

polarization characteristics. Many POLDER images of 

polarized light show cloudbow type features over cloud 

fields for scattering angles between 150 and 170 ø . This 
unexpected observation is attributed to the polarized radiance 

generated by single scattering by cloud droplets. It shows 

that, in many cases, the cloud droplet size distribution is very 

narrow. The multidirectional polarized radiance 
measurements can be inverted for an accurate estimate of the 

cloud droplet radius. 

Introduction 

The POLDER instrument (Deschamps et al., 1994) was 

launched on the ADEOS platform in August 1996. Its 

measurement principle is based on a bidimensional CCD 
detector, a rotating wheel which carries optical filters and 

polarisers and a wide field of view optics. At present, 

POLDER is the only spaceborne instrument which provided 

quantitative measurements of the reflected sunlight 
polarization characteristics. Unfortunately, due to electrical 

failure, the ADEOS platform died on June 30th, 1997. 

Nevertheless, eight months of measurements have been 

acquired which allow new investigations on the usefulness of 

polarization and directionality for Earth remote sensing. In 

this paper, we show unanticipated observations in polarized 

light. Further investigation demonstrate that, in favorable 

conditions, the cloud droplet radius can be retrieved from 

POLDER measurements with a very high accuracy. 

Observation 

Figure 1 is a three color composite (Blue: 0.44 gin; Green: 
0.67 gm; Red: 0.86 gm) of the radiance measured by the 
instrument CCD detector over a 1600x2200 km 2 area located 

across the west coast of Africa, south of the Equator. The 

image center location is approximately (20øS, 10øE). The 

black/white lines overlaid on the figure indicate the 

scattering angle in l0 ø increments (angle between the solar 

incident and the viewing directions) as well as the principal 

plane. The top figure shows the total radiance and is similar 
to what would be observed with an instrument without 

polarization capabilities. On the right side of the image 

Copyright 1998 by the American Geophysical Union. 

Paper number 98GL01221. 
0094-8534/98/98GL-01221505.00 

(East) is the African continent, with more vegetation to the 

North (top) which is evidenced by the redish color (larger 

reflectance at 0.86 gm). A few cloud fields appear as white 

areas over the land. On the left side of the figure is the 

Atlantic ocean, which is covered by a variable amount of 

clouds. This area is well known for a very high occurrence of 
stratocumulus. 

The bottom image corresponds to the exact same area, but 

displays the perpendicular component of the polarized 
radiance. In the Stokes vector representation of radiance 

(I,Q,U,V), it is the second component of the vector (Q) where 

the reference direction is the plane of scattering (defined by 
the solar and viewing directions). The white band which 

follows the 140 ø line of scattering angle corresponds to a 

maximum in the polarized radiance around this direction, 

which is characteristic of water droplets radius larger than the 

wavelength (Goloub et al., 1994). The intense cloudbow 

along the 140 ø scattering angle line is an unambiguous 

indication of the presence of liquid water droplets at the 

cloud top. For larger scattering angles, color bands indicate a 

scattering process which is highly directional and spectrally 

dependent. This is peculiar since, in the spectral range of 

interest (0.44-0.86 gm), cloud reflectances are usually 

expected to be roughly white. 

To investigate further this phenomenon, we present in Fig. 

2 the same image (only the polarized radiance is shown), but 

where the three spectral bands have been separated. The same 

general features are apparent. In the 140-170 ø range, 

oscillations of the polarized reflectance as a function of the 

scattering angle are apparent. Note that the number of 

oscillations vary with the spectral band. There are about 

twice as many in the blue band (0.44 grn) than in the near 

infrared (0.86 grn). The difference in the position of the maxima 

and minima between the spectral bands explains the 

"cloudbow" features displayed in Fig. 1. 

Interpretation 

Radiative transfer simulations show that single scattering 
provides the main contribution to the polarized radiance. 
Multiple scattering polarization is very small (H•:nsen, 1971). 
Assuming a plane parallel cloud, no absorption, and no other 
scattering processes, the single scattering contribution to the 

polarized reflectance is ß 

1 - exp[-•r(1//.ts + 1/!.t v )] 
R; s=. 4(#s +/.tv) Pp (•') (1) 

where •: is the cloud optical thickness, Pp is the polarized 

1879 

1880 BREON AND GOLOUB.: CLOUD DROPLET EFFECTIVE RADIUS 

Figure 1. Three color composite (Blue: 0.43 gm, Green: 0.67 
grn, Red: 0.86 grn) of POLDER measurements acquired by the 
CCD matrix over the Atlantic ocean and Southern Africa on 

Nov. 3rd, 1996. The top figure is for the total reflectance, 
whereas the bottom figure represents the polarized reflectance. 
The curved lines indicate the scattering angle in 10 ø 
increments (smaller radius line is for 170ø). The straight line 
is the principal plane. For each spectral band, the scale is from 
0 to 0.8 in reflectance, and from 0.08 in polarized reflectance. 

scattering phase function of the droplets, #s and #v are the 

cosines of the solar and zenith angles, respectively, and T is 

the scattering angle. In most cases, the cloud optical 
thickness is such that the exponential takes negligible 

values. Equation (1) then reduces to: 

,,_ (2) 
Rp - 4(#, +#v) 

Therefore, the polarized reflectance measurement is directly 
linked to the polarized phase function. Such functions are 

calculated using the Mie theory. Fig. 3 shows the polarized 

phase function Pp(y) computed for several cloud droplet size 
distributions as (Deirmendjian, 1969 ): 

Figure 2. Same as in Fig. 1 but the three bands have been 
separated and only the polarized reflectance is shown. The 
spectral band is 0.44, 0.67 and 0.86 lam from top to bottom. 



How do polarimetric algorithms work: RSP

Example from RSP: an along track 
scanner, not an imager

2016/09/12, 10989 scans: 12:32:15 to 15:06:21 UTC
Average Rel. Azimuth in central 60% of scans: −16°; Scattering angle range: 51°−178°
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Aerosol above cloud (polarimetric) remote 
sensing ORACLES (only) results

• AirMSPI, 2016 ER-2:
– Xu, F., van Harten, G., Diner, D.J., Davis, A.B., Seidel, F.C., Rheingans, B., Tosca, M., Alexandrov, 

M.D., Cairns, B., Ferrare, R.A. and Burton, S.P., 2018. Coupled Retrieval of Liquid Water Cloud and 
Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager 
(AirMSPI). Journal of Geophysical Research: Atmospheres, 123(6), pp.3175-3204.

• RSP, 2016 ER-2, 2017-8 P-3
– Stamnes, S., C. Hostetler, R. Ferrare, S. Burton, X. Liu, J. Hair, Y. Hu, A. Wasilewski, W. Martin, B. van 

Diedenhoven, J. Chowdhary, I. Cetinic, L. Berg, K. Stamnes, and B. Cairns, 2018: Simultaneous 
polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" 
algorithm with comparison to high spectral resolution lidar aerosol and ocean products. Appl. 
Opt., 57, no. 10, 2394-2413, doi:10.1364/AO.57.002394.

– Pistone, K., Redemann, J., Doherty, S., Zuidema, P., Burton, S., Cairns, B., Cochrane, S., Ferrare, R., 
Flynn, C., Freitag, S., Howell, S., Kacenelenbogen, M., LeBlanc, S., Liu, X., Schmidt, K. S., Sedlacek III, 
A. J., Segal-Rosenhaimer, M., Shinozuka, Y., Stamnes, S., van Diedenhoven, B., Van Harten, G., and 
Xu, F.: Intercomparison of biomass burning aerosol optical properties from in-situ and remote-
sensing instruments in ORACLES-2016, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-
2019-142, in review, 2019.

– Segal-Rozenhaimer, M., D. J. Miller, K. Knobelspiesse, J. Redemann, B. Cairns, and M. D. 
Alexandrov. 2018. "Development of neural network retrievals of liquid cloud properties 
from multi-angle polarimetric observations." Journal of Quantitative Spectroscopy and 
Radiative Transfer, 220: 39-51 [10.1016/j.jqsrt.2018.08.030]

– Miller, D. J., Segal-Rozenhaimer, M., Knobelspiesse, K., Redemann, J., Cairns, B., 
Alexandrov, M., van Diedenhoven, B., and Wasilewski, A.: Low-level liquid cloud properties 
during ORACLES retrieved using airborne polarimetric measurements and a neural 
network algorithm, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-327, in 
review, 2019.

ORACLES specific 
algorithm

Aerosol above ocean 
retrieval technique, 
data not yet archived

Results of MAPP in 
this paper

Our cloud only NN

V2 of our cloud only 
NN

Full aerosol above cloud algorithm in training…



(Multi-angle) Polarimetry is especially 
useful for ORACLES  (4 reasons)

1. Cloud properties are usually estimated using reflectance ratios to give cloud 
optical depth (COD) and effective radius… but are confounded by aerosols 
above cloud. “bi-spectral” or “Nakajima-King” 

2. Explicit retrievals of aerosols above clouds usually must assume aerosol 
absorption (e.g. Jethva et al., 2013, Meyer et al., 2015; Sayer et al., 2016).

3. Polarimetric remote sensing of cloud bows: cloud droplet size distribution, 
COD easily constrained once size is known. Less affected by aerosol above 
cloud. Applied to POLDER by Waquet et al, 2009, 2013, Peers et al, 2016. 
Constrained by limits of POLDER angular sampling. 

4. Applied to RSP data, which has many more view angles by Knobelspiesse et 
al., 2011. Constrained by existing data at the time and computational limits.



How do these algorithms work?

Bi-spectral and polarimetric 
retrievals are similar but not the 
same (see Miller et al, 2018)

What happens if we try to 
combine the above Bi-
spectral and polarimetric 
retrievals, plus solve for 
aerosols? Can we use 
machine learning to lessen 
the computational burden?

We teach a computer to connect 
observations to physical parameters, 
based on (in our case) a synthetically 
generated “training set”

• Advantage: VERY fast algorithm 
• Disadvantage: lack of physical relationship

Goals
• Improve other approaches – establish a 

starting point for optimal estimation
• Di Noia, A., et al. "Use of neural networks in ground-

based aerosol retrievals from multi-angle 
spectropolarimetric observations.”, 2015

• We can learn from blind exploration of 
measurement/retrieval space

• Experience – machine learning may be 
useful for other remote sensing problems



Machine learning (ML) can mean many things…

What lessons did we 
learn that are useful for 
others who might make 
ML algorithms?

https://xkcd.com/1838

…hopefully transcend this
(but in truth there is a lot of this)



What does one need to do?
• Choose an approach (we used Neural Networks, more details later)

• Gather or create a training set (we use radiative transfer simulations)
• Define inputs, outputs, parameterizations, assumptions
• Coding, generate “transfer function”, apply to observations 
• Assessment

Much of the literature is intended for non-scientific applications. It is also rapidly 
evolving. Identifying tightly constrained goals of your ML approach is key. Finding 
examples of similar problems is important.

We found to the following to be useful:
Di Noia, A., Hasekamp, O.P., van Harten, G., Rietjens, J.H.H., Smit, J.M., Snik, F., Henzing, J.S., de Boer, J., Keller, C.U. and Volten, H., 

2015. Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations. Atmospheric 
Measurement Techniques, 8(1).

Di Noia, A., Hasekamp, O.P., Wu, L., Diedenhoven, B.V., Cairns, B. and Yorks, J.E., 2017. Combined neural network/Phillips–Tikhonov 
approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter. Atmospheric Measurement 
Techniques, 10(11), pp.4235-4252.

Di Noia, A. and Hasekamp, O.P., 2018. Neural Networks and Support Vector Machines and Their Application to Aerosol and Cloud 
Remote Sensing: A Review. In Springer Series in Light Scattering (pp. 279-329). Springer, Cham. Available here: 
https://link.springer.com/chapter/10.1007/978-3-319-70796-9_4

…repeat



NN version 1: cloud only test

Segal-Rozenhaimer, M., D. J. Miller, K. Knobelspiesse, J. Redemann, 
B. Cairns, and M. D. Alexandrov. 2018. "Development of neural 
network retrievals of liquid cloud properties from multi-angle 
polarimetric observations." Journal of Quantitative Spectroscopy and 
Radiative Transfer, 220: 39-51 [10.1016/j.jqsrt.2018.08.030]

Archived for 2016, ER-2 and 2017 P-3 here:
https://data.giss.nasa.gov/pub/rsp/ORACLES_2016/NeuralNetworkCloud/
https://data.giss.nasa.gov/pub/rsp/ORACLES_2017/NeuralNetworkCloud/

Feed forward back propagation multi-layer 
perceptron (MLP) NN

Trained on:

What should be the inputs? And how to 
manage measurement uncertainty and large 
input vectors?

Cloud optical thickness
Cloud droplet effective radius
Cloud droplet effective variance
Solar zenith angle
Relative azimuth angle
(limited range of cloud/aircraft distances)



NN version 1: cloud only test
What should be the inputs? 

How to account for measurement uncertainty? 
How to manage large datasets? 

Input Label # input variables Reff RMSE Veff RMSE COD RMSE

Ri 30 1.01 0.016 2.21

Qi 30 0.93 0.008 9.04

Rp 20 0.74 0.006 10.85

DoLP 100 0.54 0.006 1.71

Ri-Qi 60 0.78 0.010 0.45

Ri-Rp 50 0.60 0.009 0.97

Ri-DoLP 130 0.37 0.006 1.16

Qi-Rp 50 0.80 0.005 6.88

Qi-DoLP 130 0.35 0.004 0.81

Rp-DoLP 120 0.45 0.004 1.18

Tested with different combinations of inputs

There are different ways to 
represent polarimetric data. 
Some (unexpected) 
combinations offered 
surprisingly good results.

Lesson: If you have the means to 
test your results, don’t be too 
prescriptive on inputs



NN version 1: cloud only test
What should be the inputs? 

How to account for measurement uncertainty? 
How to manage large datasets? 

44 M. Segal-Rozenhaimer et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 220 (2018) 39–51 

Fig. 3. Simulated (a) total, and (b) polarized reflectance at 550 nm versus RSP viewing zenith angle (VZA) showcasing an example of noise-free signal (solid black line), and 
noisy signals (colored solid lines) generated combining random Gaussian noise and correlated noise, as described in Section 4.1 . Increasing values of ρ indicate increasing 
amounts of uncertainty correlation. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
lar geometry, scene reflectance and polarization and measurement 
type ( R I , R Q or DoLP ). We therefore attempted to incorporate that 
knowledge of measurement uncertainty into the NN training pro- 
cess. We did this by first calculating the error covariance matrix 
( S ) for each simulated observation vector. Then, using a random 
number generator, we added ‘noise’ to the simulated scene based 
upon S . We repeated this for all simulated measurement vectors 
in a training set, to produce one noise ‘realization’. Since training 
on a single realization would add no meaningful information about 
the measurement uncertainty, this process was repeated multiple 
times, and the NN was trained with several noise realizations (i.e. 
concatenating inputs from multiple noise realizations during the 
training process). The consequence of this is to make the train- 
ing set far larger than the original noise-free simulation. This tech- 
nique that was used for the sensitivity study NN allowed us to ex- 
plore the importance of a poorly defined aspect of RSP measure- 
ment uncertainty, namely, the uncertainty correlation, expressed 
with the ρ parameter. As mentioned in Section 2.2 , small amounts 
of correlation correspond to ρ nearing 0, while large amounts have 
ρ nearing 1.0. ρ = 0.9 has been used in the past [44] , but there is 
weak instrumental justification for that value. 

Fig. 3 shows an example of a simulated, multi-angle observation 
for one channel (550 nm) of R I ( Fig. 3 a) and R Q ( Fig. 3 b) used for 
our sensitivity study training set. The solid black line shows a pure, 
noise-free, simulated signal. The color-coded lines are constructed 
by adding noise as described above, with varying degrees of uncer- 
tainty correlation. Increased amounts of correlated (angle-to-angle) 
uncertainty angularly smooth the signal compared to nearly uncor- 
related uncertainty ( ρ= 0.01), however, it shifts the absolute val- 
ues away from the original signal values. We see that the relative 
amount of noise is higher for the total reflectance component. The 
effect of different correlated noise levels on the retrieval sensitivity 
and robustness is examined in Section 4.4.2 . 

4.2. Selection of NN input size using noise adjusted PCA 
The dimension of the input measurement vector into a neural 

network scheme is one of the critical factors that determines its 
successful application (e.g., [46,56,14,17] . In our dataset we have 
7 wavelengths, each with 112 viewing zenith angles, for each of 
the measured radiative quantities (total and polarized reflectances). 
This amounts to a large number of input variables, which con- 
tain cross-correlated and linearly dependent variables, if all the in- 
puts are used in the training process. Such a problem might cause 
the network to do a poor job in generalizing its solutions, result 
in a very long convergence time and even to no convergence at 
all. To avoid such issues, and to optimize the network training 
process, we have applied a principal component analysis (PCA) to 
compress and de-noise the input variables feeding into the net- 
work. Our approach followed [17] , who used a simulated noise-free 
dataset in order to derive the transformation matrix to be applied 
on noisy and real-data measurements. More specifically, our pre- 
processing flow includes performing Principal Component Analy- 
sis (PCA) [57] on the simulated dataset, separately for R I , R Q or 
DoLP data arrays. The PCA procedure results in a rotation matrix, 
where the matrix columns are the orthonormal basis of eigenvec- 
tors (i.e. principal components) of the standardized input covari- 
ance matrix (e.g. 784 × 784 matrix that represents each of the R I , 
R Q or DoLP arrays, spanning seven wavelengths and 112 VZA). The 
number of columns in this matrix equals the original number of 
inputs from the measurement vector. The choice of the number 
of columns (i.e. eigenvectors) to retain is often subjective and de- 
pends on the amount of accuracy/reproducibility we want to re- 
tain from the original data, maximizing the initial information con- 
tent, but minimizing the amount of non-relevant components and 
noise. Here, we followed Di Noia et al. [17] , who used the noise- 
free rotation matrix as a projection operator for the noisy/real data. 

We added ‘random errors’ to 
our training set, copied and 
repeated many times

Consequence: training set 
size grew by 100x

Lesson: if training with 
synthetic data, consider how 
to represent measurement 
errors. V2 dealt with this in a 
better way.



NN version 1: cloud only test
What should be the inputs? 

How to account for measurement uncertainty? 
How to manage large datasets? 

# inputs reduced with principal 
components

Consequence: are we missing 
phenomena? How best to manage?

Lesson: we started with custom built 
routines. V2 uses TensorFlow. Utilize 
(rapidly advancing) publicly available 
software.

[ 7 waveln x 125 view angles x 2 ]
+ Geometry 

60 to 130 principal components
+ Geometry 

Input:



NN version 1: cloud only test
We validated our NN with field observations from ORACLES 2016 ER-2 observations 
that use the standard RSP algorithms: Parametric (PP-polarimetric based), Nakajima-King 
(NK-total reflectance based), and Rainbow Fourier Transform (RFT), (Alexandrov et al., 2012,2015)

y = 1.75 + 0.80x, r2=0.96 y = 9.20 + 0.56x, r2=0.45

It works!
COD better than effective radius. No effective variance sensitivity. 
Lesson: start small (cloud only) if one has external comparison data

COD

Effective 
radius



NN version 2: cloud only
Still work only with clouds, but a 
number of improvements:
• More extensive, realistic 

training set
• “standardize” by measurement 

uncertainty – far smaller 
training set needed

• Utilize TensorFlow (open 
source) NN Python routines 

• Tested different “activation 
functions”

tensorflow.org

Miller, D. J., Segal-Rozenhaimer, M., Knobelspiesse, K., 
Redemann, J., Cairns, B., Alexandrov, M., van Diedenhoven, B., 
and Wasilewski, A.: Low-level liquid cloud properties during 
ORACLES retrieved using airborne polarimetric measurements 
and a neural network algorithm, Atmos. Meas. Tech. Discuss., 
https://doi.org/10.5194/amt-2019-327, in review, 2019.
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Abstract. In this study we developed a neural network (NN) that can be used to relate a large dataset of multi-angular and

multi-spectral polarimetric remote sensing observations to retrievals of cloud microphysical properties. This effort builds upon

our previous work, which explored the sensitivity of neural network input, architecture, and other design requirements for

this type of remote sensing problem. In particular this work introduces a framework for appropriately weighting total and

polarized reflectances, which have vastly different magnitudes and measurement uncertainties. The NN is trained using an5

artificial training set and applied to Research Scanning Polarimeter (RSP) data obtained during the ORACLES field campaign

(Observations of Aerosols above Clouds and their Interactions). The polarimetric RSP observations are unique in that they

observe the same cloud from a very large number of angles within a variety of spectral bands resulting in a large dataset that can

be explored rapidly with a NN approach. The usefulness applying a NN to a dataset such as this one stems from the possibility

of rapidly obtaining a retrieval that could be subsequently applied as a first-guess for slower but more rigorous physical-10

based retrieval algorithms. This approach could be particularly advantageous for more complicated atmospheric retrievals

–such as when an aerosol layer lies above clouds like in ORACLES. For the ORACLES 2016 dataset comparisons of the NN

and standard parametric polarimetric (PP) cloud retrieval give reasonable results for droplet effective radius (re : R = 0.756,

RMSE = 1.74µm) and cloud optical thickness (⌧ : R = 0.950, RMSE = 1.82). This level of statistical agreement is shown to

be similar to comparisons between the two most well-established cloud retrievals, namely the the polarimetric cloud retrieval15

and the bispectral total reflectance cloud retrieval. The NN retrievals from the ORACLES 2017 dataset result in retrievals of

re (R = 0.54, RMSE = 4.77µm) and ⌧ (R = 0.785, RMSE = 5.61) that behave much more poorly. In particular we found

that our NN retrieval approach does not perform well for thin (⌧ < 3), inhomogeneous, or broken clouds. We also found

1

https://doi.org/10.5194/amt-2019-327
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NN version 2: cloud only
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• Agrees with standard algorithms (polarimetric and bispectral) as well as they 
agree with each other

• Uses different NN for each product, aircraft
• (correctable) bias appears to be due gases not in training set
• Behaves more like polarimetric retrieval when clouds are homogeneous, like bi-

spectral when clouds are broken
• Full, gas corrected dataset to be posted soon to data.giss.nasa.gov/pub/rsp/



NN version 3: aerosol above cloud

Two major changes
• Training set uses randomly distributed parameters within a defined 

distribution, not a fixed grid. ~10,000 cases, 15gb
• Convolutional Neural Networks: treat data as ‘image’

Histograms of these values are shown in Figure 1. Some comments about specific parameters 
follows.  
 
Table 1 NN training set simulation parameters. 

NetCDF file tag Parameter Unit 
aer_thick  Aerosol layer (physical) thickness meters 
aod Aerosol optical depth (total), 555nm - 
cloud_top Cloud top height meters 
cod Cloud optical depth, 555nm - 
fmf Aerosol fine size mode AOD fraction, 555nm - 
gap Cloud top - aerosol layer bottom gap meters 
ImNidx_f Aerosol fine size mode imaginary refractive index - 
Reff_aer Aerosol fine size mode effective radius microns 
Reff_cld Cloud droplet size distribution effective radius microns 
ReNidx_f Aerosol fine size mode real refractive index - 
Veff_aer Aerosol fine size mode effective variance - 
Veff_cld Cloud droplet size distribution effective variance - 

 

 
Figure 1 NN training set histograms of randomly generated parameters. 
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Some examples of I, Q and DoLP from the training LUT:



Some examples of I, Q and DoLP from the training LUT:



Some examples of I, Q and DoLP from the training LUT:



Some examples of I, Q and DoLP from the training LUT:



Convolutional Neural Networks use kernels similar to those in 
image processing to represent the spatial relationships in inputs

We are currently in ‘hyperparamer’ testing stage, examining best 
kernels

Training set much larger now, we may need to use supercomputing 
facilities. Note that once NN is trained, application is fast.

V3 status

AOD COD Reff



Conclusions
• We successfully created two generations of NN’s for multi-angle polarimetry
• Clouds only at first because that can be validated. Now creating aerosol above 

cloud NN with what we have learned. 

Some lessons
• Be prepared to iterate, and update your methods as you learn (and as new 

techniques become available)

• Don‘t be overly prescriptive 

• Start small with something you can validate, then build

Thanks!


