transfert radiatif lidar pour études de l'atmosphère

V. Noel (CNRS/LMD)

- 1. Rappels sur la mesure
- 2. La modélisation du signal, les points durs
- 3. Ce qui reste à faire

1.1 les mesures lidar

1.2 L'équation lidar

• Puissance P rétrodiffusée depuis z

$$P(\lambda, z) = KF_0\beta(\lambda, z)\frac{A}{z^2} \exp\left[-2\int_0^z \alpha(z')dz'\right]$$

$$\beta(\lambda, z) = \text{coeff.} \qquad \int \alpha(\lambda, z')dz' =$$

rétrodiffusion
$$\text{extinction entre}$$

à l'altitude z
$$0 \text{ et } z$$

On utilise souvent β' = βe^{-2∫α(λ, z')dz'}
 coeff. rétrodiffusion atténué ou apparent

1.3 propriétés optiques locales

- $\beta(\lambda, z)$ et $\alpha(\lambda, z)$ fonctions de
 - N(z) concentration de particules
 - σ(λ, z) section efficace de diffusion (~D²), fonction de la taille/forme/orientation des particules vs. longueur d'onde
 - $P(\theta)$ fonction de diffusion angulaire (pour β)
- Pour inverser on suppose (!) $\beta = k\alpha$ (fonction de phase homogène dans le milieu).
- Complications : $\beta = \beta_{\mathbb{I}} + \beta_{\perp}$

2.1 modélisation : problème direct

suivi spectral (Doppler, HSRL, Dial)

2.2 modélisation : problème inverse

- Restitutions souhaitées
 - sommet/base de nuages/aérosols (par seuillage du signal)
 - concentrations en particules
 - extinction (intégrée ou non)
 - microphysique particulaire : forme, orientation, distribution en taille, phase... (par les propriétés optiques de diffusion)
 - spéciation d'aérosols, soit par les propriétés microphysiques ou directement par les propriétés optiques
- La possibilité de restituer une information spécifique dépend souvent de notre capacité à contraindre les autres informations, e.g. hypothèse de microphysique homogène

2.3 les diffusions multiples

- l'hypothèse de diffusion unique des photons est rarement valide
- photons souvent diffusés *n* fois vers l'avant + 1 fois vers l'arrière

- retarde l'arrivée des photons = signal qui "bave" vers l'opposé de l'instrument ("pulse stretching")
- dépolarise le faisceau dans les milieux denses comme les nuages liquides

2.3 les diffusions multiples (2)

plus le volume diffusant est important, plus le signal est affecté

- pire pour larges FOV et divergences laser, lidar spatiaux
- pour les grandes FOV, similaire au problème du NUBF radar

from "Lidar and Multiple Scattering" (L. R. Bissonnette) in "Lidar" (2005)

- plusieurs approchent prennent en compte *n* diffusions, avec dépolarisation
 - modélisation statistique par raytracing Monte-Carlo. Lent mais très flexible (e.g. Flesia and Starkov 1996; avec Raman : Cheng et al., 2003; Winker, 2003; avec polar : Chaikovskaya, L, 2008).
 - modélisation analytique du raytracing (Oppel et al., 1995; Samoilova, 2001). Solution simplifiée (Eloranta, 1998 : marche pas pour le spatial)
 - Quasi-Small Angle approximations : fast (e.g. Hogan, 2006)

utiles pour évaluer les incertitudes des inversions

2.3 les diffusions multiples (3)

• difficile à ignorer pour les lidars spatiaux (e.g. LITE, CALIPSO)

 dans les nuages d'eau liquide, la DM augmente la dépolarisation
 ~linéairement avec la pénétration (Hu et al., 2001; Hu et al., 2007)

• effet ± négligeable dans la glace

3.1 nouveaux milieux : nuages 3D

- résolutions fines : hypothèse plan parallèle invalide
- la structure nuageuse 3D fine doit être prise en compte (trous dans les nuages, etc.) : impact DM in-FOV et out-FOV (sources lumineuses secondaires)
- cf. Poster F. Szczap

3.1 nouveaux milieux : l'océan

- profils de concentration en plancton/carbone organique.
- propriétés diffusantes, concentrations, déconvolution écho de sol...

Particulate Organic Carbon (mg m⁻³)

3.2 lidars en orbite(s)

		wavelengths		gths	bonuo	b o o roo o
		355	532	1064	DONUS	beams
CALIPSO	-2018		βδ	β		1
CATS-ISS	2015-	βδ	βδ	βδ	HSRL 532, 5kHz	2 (4 FOV)
ADM	2016-	β			Doppler	1
IceSAT-2	2017		β		10 kHz	6
EarthCARE	2018	βδ			HSRL 355	1
GEDI	2019			β		14
OPAL	2019?	β	βδ	βδ	HSRL 532	1
MERLIN	2019	1645nm		m	DIAL	1
MESCAL	2022 ?		βδ		MFOV ?	x ?
LIVE	2025 ?				?	?

3.2 lidars en orbite(s)

		wavelengths		gths	bonuo	
		355	532	1064	DONUS	beams
CALIPSO	-2018		βδ	β		1
CATS-ISS	2015-	βδ	βδ	βδ	HSRL 532, 5kHz	2 (4 FOV)
ADM	2016-	β			Doppler	1
IceSAT-2	2017		β		10 kHz	6
EarthCARE	2018	βδ			HSRL 355	1
GEDI	2019			β		14
OPAL	2019?	β	βδ	βδ	HSRL 532	1
MERLIN	2019	1645nm		m	DIAL	1
MESCAL	2022 ?		βδ		MFOV ?	x ?
LIVE	2025 ?				?	?

3.3 nouvelles techno, nouveaux problèmes

- HSRL (EarthCare, CATS, OPAL) : séparation Rayleigh/Mie, élimine l'hypothèse du *k* constant pour les inversions
- Raman/DIAL (vapeur d'eau) : décalages spectraux (par diffusion) et sensibilité spectrale (à la détection)
- Multi-beams : IceSAT-2, GEDI, CATS, MESCAL ?
- High PRF : IceSAT-2 10kHz, CATS
 5kHz

- effets spectraux
- impact DM ?

- diffusion interfaisceaux : "crossover"
- "simultaneous pulse signals" effect

3.4 three state of the art fwd models

	ECSIM (Donovan et al. 2015)	X (Szczap et al. 2013, poster)	Multiscatter (Hogan & Battaglia 2008)
type	Monte	semi-analytique (QSA), rapide	
input	scene (LES, meso-e	profils 1D	
DM	\checkmark	\checkmark	\checkmark
depol	\checkmark	\checkmark	in dev
spectral (HSRL, Doppler, etc.)	\checkmark	in dev	approx. HSRL

• to do : cross-over (high PRFs, multi-beam, multi-FOV), autres milieux (ocean)

Roadmap

- impact des hétérogénéités nuageuses 3D
- modélisation du crossover lumineux en plusieurs configurations instrumentales, impact sur les problèmes direct et inverse
- problème direct et inverse dans l'océan
- effets de DM + dépol pour inversions microphysiques
- effets spectraux pour inversions Doppler, wv...