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2. Method 

 From the multispectral top-of-atmosphere observations, ocean colour inversion 

aims at separating atmosphere and water contribution. In this context, we 

propose a novel Bayesian model with a focus on the definition of non-

homogeneous priors on the aerosol and water multispectral signatures. The 

considered priors are set conditionally to observed covariates, typically 

geometry acquisition conditions and pre-estimates by a standard algorithm. We 

demonstrate from numerical experiments performed for real data the relevance 

of our non-homogeneous Bayesian setting to retrieve geophysically-consistent 

ocean colour images, in particular when dealing with complex coastal waters 

where standard algorithms perform poorly. Using a ground truthed dataset, 

quantitative comparisons with operational schemes stress the overall 

improvement on the relative absolute error (respectively, 37% compared with 

the standard ESA MEGS algorithm and 9% compared with the ESA C2R neural 

network, for 12 bands ranging from 412 to 865 nm).  
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3.Numerical experiment 

 

The ambition of a Case1&2 algorithm to inverse operationally the OLCI water 

leaving reflectances: the Bayesian formalism is particularly suitable to address 

transitions between water types. 

An incoming training using radiative transfer simulations (coupled ocean + 

atmosphere) to cover the possible range of geometry, water and aerosol 

conditions.  

A parallelized code distributed freely in Odesa (The algorithm involves multiple 

initialisations and requires therefore important processing resources) 

http://www.odesa-info.eu/info/. 

4.Towards an operational  algorithm for OLCI 

 The MERMAID (http://mermaid.acri.fr/home/home.php) in-situ matchup 

database is a comprehensive dataset that gathers in-situ measurements of water 

leaving radiances, IOPs, and MERIS TOA reflectances. To  validate  the  

proposed  methodology,  radiometric  in-situ  profile  dataset  have  been  

divided  randomly in two independent datasets: a training dataset (to estimate 

model parameters and a validation dataset. 
 

Ocean color inversion results  (validation dataset) 

 

 

 

 

 

 

 

 

 

Ocean color inversion results:  

  MERISFR 20090322, Gironde‘s Estuary 
 

 

 

   
 

 

 

 

 

 

 

Ocean color inversion amounts to relate multispectral water reflectance to top-of-atmosphere satellite measurements. We rely here on the general observation model given by the Rayleigh corrected reflectance variable ρRCλ [1] 

ρRCλ= ρgCλ-ρRayλ=ρaerλ+ tdλ.ρw λ+ε (1) Ocean color inversion amounts to relate multispectral water reflectance to top-of-atmosphere satellite measurements. We rely here on the general observation model given by the Rayleigh corrected reflectance variable ρRCλ [1] 

ρRCλ= ρgCλ-ρRayλ=ρaerλ+ tdλ.ρw λ+ε (1) 
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 Ocean color inversion amounts to relate multispectral water reflectance to top-of-

atmosphere satellite measurements. We consider here the Rayleigh corrected reflectance 

variable ρ𝑅𝐶 𝜆  : 

ρ𝑅𝐶 𝜆 =  ρ𝑔𝐶 𝜆 − 𝜌𝑅𝑎𝑦 𝜆 = 𝜌𝑎𝑒𝑟 𝜆 + 𝑡𝑑 𝜆 . 𝜌𝑤 𝜆 + 𝜌𝑐𝑜𝑢𝑝𝑙 𝜆 + ε             (1) 

 

 In our scheme, the variables to be estimated are xw= {hi}, the coordinates of 𝜌𝑤 in a Non-

Negative Matrix Factorization (Lin, 2007) reference spectrum, and xa ={ai} the polynomial 

coefficients of the aerosol models (We consider here a 3 order polynomial to model the 

aerosol reflectance and the coupling term). The diffuse transmittance td is the product of 

both air molecules and aerosol particles scattering. 

 

 We consider a Bayesian model which introduces priors on the variable to be estimatedand 

ressort to maximizing the a posteriori likelihood (MAP criterion): 
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In (2), the first likelihood term evaluates the relevance of the observed TOA measurements 

with respect to variables xa  and xw. The second and third term refers to the prior on each 

variable, where covariates φ act as a conditioning covariates.  

 

 From a physical point of view, the acquisition geometry (Өs, the sun zenith angle, Өv, the 

view zenith angle, and δψ, the delta azimuth) affect both the aerosol and water reflectance 

spectra. Besides, we argue that a preliminary analysis of the NIR part of the spectrum during 

the standard BPAC procedure, especially estimates of variables 𝜌𝑎𝑒𝑟(865) and β (aerosol’s 

slope) and resulting 𝜌𝑤 780  initial estimate, also provide valuable cues for the inversion of  

(1).  

 

 We set the priors as latent class regression models derived from a Gaussian Mixture Model 

(GMM) of the joint distribution of extended variables Xw= {x𝑤 ,φ 𝑤} and 𝑋𝑎 = {x𝑎 ,φ 𝑎} 

with water covariates φ 𝑤 = { 𝜌𝑤 780 , Өv, Өs} and aerosol covariates φ 𝑎 = {𝜌𝑎𝑒𝑟(865), 
β, Өv, Өs}: 

𝑃 x𝑤|φ 𝑤  =   𝛬x𝑤|φ 𝑤,𝑖  𝑔Σx𝑤|φ 𝑤,𝑖
x𝑤 − 𝜇𝑋𝑤|φ 𝑤,𝑖𝑖                           (3) 

      𝑃 x𝑎|φ𝑎  =   𝛬x𝑎|φ 𝑎,𝑗  𝑔Σx𝑎|φ 𝑎,𝑗 
x𝑎 − 𝜇𝑋𝑎|φ 𝑎,𝑗

𝑗

 

 Examples of calibrated water and aerosol reflectance spectra (training dataset) 


