On Clouds Rabbits and Foxes

Graham Feingold – NOAA Boulder CO

Marine Stratocumulus - the global reflectors

Questions related to Thermodynamic and microphysical process

Complexity

Closed cell formation

Open cell formation

Systems Approach to cloud-drizzle-aerosol problem

Looking for the **Emergent Behavior**

1)Cloud evolution

1)Cloud evolution
2)Rain Consume clouds

Cloud evolution
Rain Consume clouds
Delay

Cloud evolution
Rain Consume clouds
Delay
Aerosol effects on the above

Predator-Prey Model

Lotka-Volterra Equation for Population Dynamics (circa 1925)

y = predator

LWP =
$$\int_{0}^{H} q(z)dz = \frac{c_1}{2}H^2$$
,

$$\dot{H}_r = \frac{dH}{dt} = \frac{dH}{d\text{LWP}} \frac{d\text{LWP}}{dt},$$

$$\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} - \dot{H}_r(t - T).$$

$$\dot{H}_r = \frac{1}{c_1 H} R = \frac{\alpha H^2}{c_1 N_d},$$

 $R = \alpha H^3 N_d^{-1}$

$$\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} - \dot{N}_d(t - T).$$

$$R \propto \frac{d \text{LWP}}{dt},$$

$$R(t) = \frac{\alpha H^3(t - T')}{N_d(t - T')}$$

$$\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} - H_r(t - T)$$

Cloud Depth H:

Source term due to meteorology Sink term due to rain (with delay)

 $\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} - \frac{\delta N_d}{dt} (t - T) \begin{vmatrix} \text{Source term due to } t \end{vmatrix}$

<u>Drop concentration N_d :</u>

Source term due to aerosol sources Sink term due to coalescence (with delay)

$$R(t) = \frac{\alpha H^3(t - T')}{N_d(t - T')}$$

Rainrate R

Based on Theory (Kostinski 2008) and many Observations

Steady State Solution to Cloud Depth H

$$\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} - H_r(t - T) = 0$$

Steady State Solution to Cloud Depth H

Cloud Depth determined by drop concentration N_d

H0 = 700, τ of the cloud = 100 mins delay = 90 mins, N=80

H0 = 700, τ of the cloud = 100 mins delay = 90 mins, N=50

Stable States

At steady state: Aerosol sources are sufficient to maintain balance between sources and rainfall removal

> Cloud depth-N Cloud depth-R

~ 7 day simulation

Stable States: Oscillation around a mean state

Stronger rain: Oscillations around a steady state

Cloud depth-N
Cloud depth-R

~ 7 day simulation

H0 = 700, τ of the cloud = 100 mins delay = 90 mins, N=30

H0 = 700, τ of the cloud = 100 mins delay = 90 mins, N=80 to 30

H0 = 700, τ of the cloud = 100 mins delay = 190 mins, N=27

Oscillations?

Large Eddy Simulation: Predator-Prey Characteristics

Adapted from Feingold and Kreidenweis 2002

Synchronization: Oscillations in Precipitation

3 cases: DYCOMS ATEX VOCALS

Feingold, Koren, Wang, Xue, Brewer (2010)

Synchronization: Oscillations in Precipitation

3 cases: DYCOMS ATEX VOCALS

Feingold, Koren, Wang, Xue, Brewer (2010)

Synchronization: Oscillations in Precipitation

Feingold, Koren, Wang, Xue, Brewer (2010)

Time-Dependent Steady State Solutions

$$\frac{dH}{dt} = \frac{H_0 - H}{\tau_1} - H_r(t - T)$$

$$R(t) = \frac{\alpha H^3(t - T')}{N_d(t - T')}$$

$$\frac{dN_d}{dt} = \frac{N_0 - N_d}{\tau_2} - \frac{\delta N_d}{dt} (t - T) \bigg|_{sink}$$