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1. Introduction  
Clouds are vertically inhomogeneous 

media but homogeneous cloud 
model is used in satellite cloud 

retrieval algorithms – contradiction. 
   Average size is the 

 same on all levels 
In the clouds 



Courtesy: R. Hogan 

Reality 



  

Question: Is it possible to make profiling of water 
clouds using passive (and not exclusively 
active) observations? 

 
 
 
 
 

    Answer: Yes – at least in some 
cases! 

 
     
 
 
 
 
 
 
 

 
     
 
 
 
 
 



  

 
     
 
 
 
 
 
 
 
 
 

Idea: Use of multi-spectral and multi-
angular polarimetric hyperspectral 

observations (penetration depth 
difference for   different probing 

wavelengths, observation geometries 
and polarization -------> 

 sampling of different cloud volumes) 
References for use of  
MODIS observations: 

Chang and Li, 2002, 2003; 
Kokhanovsky and Rozanov, 2011 

 
 
 



                   2. Theory 



Variation of reflectance 
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Results of calculations 
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Algorithm 
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3.1 Synthetic retrievals 
  

3. Retrievals 
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Retrievals using MODIS data 

1. Retrievals over land 
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2. Retrievals over ocean 

+ 
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Conclusions and outlook 
•  It is possible to retrieve vertical profiles of 

effective radius of droplets in clouds using passive 
spectral measurements in some cases as 
demonstrated in the presentation. Further 
validation using in situ measurements is needed. 

•  The developed technique assumes that the cloud 
optical thickness is known from retrievals in the 
visible. Therefore, the problem is reduced to the 
case of finding a_ef(z) because for a fixed assumed 
N(z) profile (up to a constant multiplier) and 
known COT, profiles a_ef(z) and N(z) are inter-
related. 

•  The technique also enables the improvement of the 
liquid water path estimation 
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