Droplet vertical sizing in shallow marine clouds

 using passive satellite measurementsAlexander A. Kokhanovsky(1), Vladimir V. Rozanov(1), Nicholas King(2)
(1)Institute of Remote Sensing, Bremen University P. O. Box 330440 Bremen, Germany
(2) Centre for Atmospheric Science, University of Manchester, Manchester, UK

alexk@iup.physik.uni-bremen.de

Contents

- Introduction
- Variation of spectral cloud reflectance
- Algorithm
- Application to synthetic, airborne and satellite data
- Conclusions

1. Introduction

Clouds are vertically inhomogeneous

 media but homogeneous cloud model is used in satellite cloud retrieval algorithms - contradiction.

Question: Is it possible to make profiling of water clouds using passive (and not exclusively active) observations?

Answer: Yes - at least in some cases!

Idea: Use of multi-spectral and multiangular polarimetric hyperspectral observations (penetration depth difference for different probing wavelengths, observation geometries and polarization -------> sampling of different cloud volumes)

References for use of MODIS observations: Chang and Li, 2002, 2003; Kokhanovsky and Rozanov, 2011
(⿺) Universität Bremen ife Bremen

2. Theory

Variation of reflectance

$\delta R_{a_{-} e f}(\lambda)=\sum_{k=1}^{N_{k}} S_{a_{-} e f}\left(\lambda, z_{k}\right) \frac{a_{e f}\left(z_{k}\right)-\bar{a}_{e f}\left(z_{k}\right)}{\bar{a}_{e f}(z)}$

$$
S_{a_{-} e f}\left(\lambda, z_{k}\right)=\left(\frac{\delta R(\lambda)}{\delta \ln a_{e f}}\right)_{k} f_{k} \Delta z_{k}
$$

$\delta a_{e f}(z)$ variation of droplet size at depth z
(U) Universität Bremen ife Bremen

Results of calculations

(U) Universität Bremen

ife Bremen

Algorithm

$$
\begin{gathered}
\delta R\left(\lambda, a_{e f}(z), \stackrel{\stackrel{\mathrm{r}}{\Omega})}{ }\right)=\int_{z_{1}}^{z_{2}} W\left(z, \bar{a}_{e f}(z), \lambda, \stackrel{\mathrm{r}}{\Omega}\right) \delta a_{e f}(z) d z \\
a_{e f}(z)=A+z B \\
\delta a_{e f}=\delta A+z \delta B
\end{gathered}
$$

$$
\delta R(\lambda)=c_{1}(\lambda) \delta A+c_{2}(\lambda) \delta B
$$

$$
\stackrel{\mathrm{r}}{y}=\hat{c} \stackrel{r}{x}, \quad \hat{c}^{T} \stackrel{\mathrm{r}}{y}=\hat{c}^{T} \hat{c} \hat{\mathrm{r}}, \quad \stackrel{\mathrm{r}}{x}=\left[\hat{c}^{T} \hat{c}\right]^{-1} \hat{c}^{T} \stackrel{\mathrm{r}}{y}
$$

(U) Universität Bremen ife Bremen

3. Retrievals

3.1 Synthetic retrievals

Retrievals using aircraft data

Retrievals using MODIS data

1. Retrievals over land

ARM site
 Oklahoma USA

100W

95W

35 N

2. Retrievals over ocean

a_ef at top of cloud

a ef at middle of a cloud

Conclusions and outlook

- It is possible to retrieve vertical profiles of effective radius of droplets in clouds using passive spectral measurements in some cases as demonstrated in the presentation. Further validation using in situ measurements is needed.
- The developed technique assumes that the cloud optical thickness is known from retrievals in the visible. Therefore, the problem is reduced to the case of finding a ef (z) because for a fixed assumed $\mathrm{N}(\mathrm{z})$ profile (up to a constant multiplier) and known COT, profiles a_ef(z) and $N(z)$ are interrelated.
- The technique also enables the improvement of the liquid water path estimation

Acknowledgements

- NASA
- ESA
- DFG
- Aircraft team
- VOCALS-UK team

