Aerosol and cloud parameters from UV-visible spectrometers GOME-2, SCIAMACHY, OMI

Piet Stammes and colleagues at KNMI

Aerosol-Clouds-Climate workshop

Paris, 12-14 September 2011

"The Antropocene" (Paul Crutzen)

- Growing world population (9 billion in 2050)
- Growing energy demand, especially in developing countries
- Growing use of fossil fuel
- Growing air pollution
- Growing greenhouse effect

Tropospheric NO₂

OMI

less NO₂

Mijling, Boersma, Van der A, KNMI

more NO₂

2005-2008

OMI tropospheric NO₂

2005 - 2008

Satellite UV-visible spectrometers

•	GOME	ERS-2	240 – 800 nm
•	SCIAMACHY	Envisat	240 – 1750 nm
•	OMI	EOS-Aura	270 - 500 nm
•	GOME-2	Metop-A	240 – 800 nm

GOME-2/SCIAMACHY/GOME overpass at 9:30/10:00/10:30 LT OMI overpass at 13:30 LT

Strong and weak points of spectrometers

Strong points:

- Differential absorption spectroscopy for trace gases (O₃, NO₂, SO₂, HCHO)
- Absorbing aerosols from UV spectrum
 - AOT is large; surface is dark; AAI works with aerosols + clouds
- Cloud height (even aerosol height) from O₂ A-band spectrum
 - cloud height down to the surface, independent of temperature.

Weak points:

- Single view
- Limited spatial resolution

Pixel sizes

Absorbing aerosol distribution from AAI

There are more than three decades (1978–2011) of satellite AAI data.

Global map of Envisat/SCIAMACHY AAI for 2002-2010

Times series for south-west Africa

Tropospheric NO₂ column: good correlation with AAI. No clear trend in AAI visible.

Regional averages of tropospheric NO₂ and AAI correlate rather well.

Gijs Tilstra, KNMI 10

Pepijn Veefkind, KNMI | 11

OMI NO₂ and MODIS AOT

OMI Tropospheric NO₂

MODIS AOT at 550 nm

Time period 2005-2007 Gridded 1x1 degree

West Europe East Europe Mediterranean

Veefkind et al., ACP, 2011

AOT - NO₂ Spatial Correlation

Region	Correlation	Slope
West Europe	0.79	0.93 10 ⁻¹⁷
East Europe	0.58	1.68 10-17
Mediterranean	-0.20	N/a

Veefkind et al., ACP, 2011

AAI detects smoke over clouds

SCIAMACHY AAI overlayed on MODIS image

West of Angola, 9 Sept 2004

De Graaf et al., JGR, 2007

14

Reflectance spectra of smoke over clouds

T)

Oxygen absorption gives pressure inside cloud

Global mean time series of O₂ cloud pressure

17

Conclusions

- 1. Combining satellite observations of trace gases and aerosols provides a wealth of information on secondary aerosols.
- 2. The AOT/NO₂ ratio varies strongly globally. This ratio may be used as indicator for combustion efficiency.
- 3. UV spectra are powerful for detecting absorbing aerosols.
- 4. Oxygen absorption gives independent information for detecting cloud (midlevel) height and aerosol height.
- 5. Combining trace gas and aerosol information from satellite is essential to study chemical cycles.
- 6. GOME-2, SCIAMACHY and OMI products are produced and published near-real-time; see <u>www.temis.nl</u>.

Optical thickness in UV and visible

optical thickness

Absorbed irradiance (polluted–clean clouds)

Stammes et al., Proc. IRS 2008

GOSAT – O2 A-band spectra

Ofelia Vieitez, KNMI 💱

OMI OMAERUV Aerosol Algorithm

Products:

-Extinction and absorption Optical Depth (354, **388**, 500 nm), AOD, AAOD -Single Scattering Albedo (SSA) -Absorbing Aerosol Index (AAI)

Recent Upgrades:

-New carbonaceous aerosol Model -CALIOP Aerosol Height Data -Aerosol type: AIRS CO data

Accuracy estimates: -SSA: 0.05 -AOD: 0.1 or 30%

Omar Torres, NASA/GSFC

Reflectance at TOA with absorbing aerosols and matched Rayleigh reflectance

Reflectance at TOA with absorbing aerosols

Volcanic ash - Eyjafjallajokull

MODIS with OMI AAI overlaid

13 May 2010

AI

4.0

S. M. M.

Retrieval of aerosol parameters from GOSAT spectra

Vieitez, Sanders, De Haan, KNMI

Absorption optical thickness

High values of abs. opt. thick. strong absorption lines Low values of abs. opt. thick. continuum

De Graaf et al., 2011²⁸