Progress on developments from MISR to MSPI

David J. Diner¹, Michael J. Garay², and Russell A. Chipman³ ¹Jet Propulsion Laboratory, California Institute of Technology ²Raytheon Company ³College of Optical Sciences, University of Arizona

Observations and modeling of aerosol and clouds properties for climate studies September 12-14, 2011 Paris, France

© 2011 All rights reserved.

Evolution from MISR to MSPI

Capability	Multi-angle Imaging SpectroRadiometer (MISR)	Multiangle SpectroPolarimetric Imager (MSPI) strawman concept
UV bands	Not included	365, 385 nm
VNIR bands	446, 558, 672, 866 nm	445*, 540, 645*, 762.5, 865* nm
SWIR bands	Not included	1617*, 1875, 2185* nm *polarimetric bands
Multiangle views	0°-70° views, 9 angles	0°-70° views, 7 angles + gimbaled camera
Polarimetry	Not included	0.5% DOLP uncertainty
Spatial resolution	275 m – 1.1 km	125 m – 2.2 km
Global coverage	9 days	4 days (off nadir); 2 days (nadir)

MSPI requirements derived from Aerosol Science Working Group for the Aerosol-Cloud-Ecosystem (ACE) mission

Aerosol retrievability

MISR operational retrievals	 Based on lookup table (LUT) of precalculated aerosol mixture models
MSPI	 LUT likely too limiting Optimization of aerosol and surface parametric models presents an alternative (Govaerts et al., 2009; Waquet et al., 2009; Dubovik et al., 2010)

- Kokhanovsky et al. (2010)"blind" retrieval experiment
 - MISR simulation: Radiances only, 9 angles, 4 bands
 - Aerosol models in extended MISR LUT did not accurately reproduce the radiance data
 - AODs biased low by 14%

Aerosol retrievability

MISR operational retrievals	 Based on lookup table (LUT) of precalculated aerosol mixture models. Discretizes aerosol parameters
MSPI	 LUT less practical Optimization of aerosol and surface parametric models presents an alternative (Govaerts et al., 2009; Waquet et al., 2009; Dubovik et al., 2010)

- Kokhanovsky et al. (2010)"blind" retrieval experiment
 - We revisited the problem using an optimization approach (no LUT)
 - Excellent fits, but are the solutions accurate?

MISR optimized retrieval simulation - 1

Levenberg-Marquardt optimization of a lognormal aerosol distribution parameterized by AOD, complex refractive index, and particle effective radius and size distribution width

Diner, D.J., R.A. Hodos, A.B. Davis, M.J. Garay, J.V. Martonchik, S.V. Sanghavi, P. von Allmen, A.A. Kokhanovsky, P. Zhai (2011). Atmos. Res., in press.

MISR optimized retrieval simulation - 2

Diner, D.J., R.A. Hodos, A.B. Davis, M.J. Garay, J.V. Martonchik, S.V. Sanghavi, P. von Allmen, A.A. Kokhanovsky, P. Zhai (2011). Atmos. Res., in press.

Observational capability developments

GroundMSPI is operating in the field

Spectral bands

355, 380, 445, 470*, 555, 660*, 865*, 935 nm (*polarimetric)

AirMSPI has flown on the NASA ER-2 Oct. 2010, Aug./Sep. 2011

MSPI polarization modulation approach

Diner, D.J., A. Davis, B. Hancock, S. Geier, B. Rheingans, V. Jovanovic, M. Bull, D.M. Rider, R.A. Chipman, A. Mahler, and S.C. McClain (2010). *Appl. Opt.* 49, 2929-2946.

GroundMSPI calibrated DOLP error

RMS DOLP error = 1σ deviation in DOLP of fully polarized target rotated through 360° of orientation

Example GroundMSPI imagery

470, 660, 865 nm Intensity 470, 660, 865 nm DOLP 470, 660, 865 nm AOLP

GroundMSPI polarization quiver plot

- GroundMSPI time lapse imagery at Kitt Peak, 18 March 2011
 Dome is coated in titanium dioxide, a depolarizer
- Superimposed by "quiver plot" at 470, 660, 865 nm
 - Length of lines proportional to DOLP
 - Orientation shows AOLP in meridian plane

AirMSPI first flight imagery, 7 October 2010

RadianceRadianceRadianceDOLP445, 555, 660355, 380, 445470, 660, 865470, 660, 865

Clouds and cloud reflections over ocean

Clouds in polarized light

AirMSPI imagery over Van Nuys, CA

DOLP, 470, 660, 865 nm supernumerary bows

170°145°increasing backscatter110°

Concluding remarks

- The MSPI concept is derived from MISR heritage
- MSPI is a UV-SWIR multiangle imager with high polarimetric accuracy using photoelastic modulation
- New retrieval paradigms are needed to handle the advance in information content
- UV-VNIR GroundMSPI and AirMSPI prototypes are currently in operation
- UV-SWIR AirMSPI-2 is under development
 New channels planned include O₂ A-band, a cirrus channel at 1875 nm, and polarimetry at 1617 and 2185 nm