Retrieval of time-sequences of particle parameters from multiwavelength lidar measurements

Igor Veselovskii Physics Instrumentation Center, Russia

Information Available from Aerosol Lidar

- Backscatter Lidar
- Aerosol layer heights
 - Attenuated backscatter
- Extinction profile derived from backscatter
- Backscattering and extinction profiles at multiple wavelengths
- Particle size distribution at different heights
- Volume, surface, number densities, effective radius
- Complex refractive index and SSA
- Joint use of α and β key for successful retrieval.
- The Raman lidar is based on tripled Nd:YAG laser: Three elastic channels and two nitrogen Raman (3+2) Backscattering β – 355, 532, 1064 nm Extinction α – 355, 532 nm

We need to treat underdetermined problem

For every set Rmin, Rmax, m_R , m_I - the problem is welldetermined: number of optical data = number of equations

Rmin, Rmax, m_{R}, m_{I} are varied and several thousands of solutions are found

Every solution is characterized by discrepancy (difference between experimental data and data calculated from solution)

Solutions are ranged and averaged

This is how it works

Particles parameters are retrieved from synthetic optical data; ~1% of solutions are averaged.

Treatment of Dust Particles

from M.Wiegner

<u>Main Idea:</u> generalizing aerosol modeling by using randomly oriented spheroids instead of spheres (*Mishchenko et al. 1997*)

Parameters: $dV(r)/d\ln r$, $+ dn(\varepsilon)/d\ln \varepsilon$ r - radius of volume-equivalent sphere

 ϵ - aspect ratio

The positive experience of **AERONET** is used:

• Aerosol is mixture of spheres and spheroids

 $\frac{\partial V(r)}{\partial \ln r} = \frac{\partial V^{s}(r)}{\partial \ln r} + \frac{\partial V^{un}(r)}{\partial \ln r} \qquad \frac{\partial V^{un}(r)}{\partial \ln r} = \eta \frac{\partial V(r)}{\partial \ln r}$

• The spheroidal kernel functions are calculated with look-up tables provided by Dubovik et al.

from O.Dubovik

Saharan dust outbreak, Achern 2007 Data of Paolo Di Girolamo

Time evolution of the particle backscatter ratio at 1064 nm. Dust outbreak occurs on 1 August 2007 around 18:00. In the centre of plume the coarse mode dominates PSD.

Back trajectories

Profile of volume density and effective radius

Two Approaches to Retrieval

Optical data (α or β) at different λ are calculated from equation:

$$g_{i} = \int_{0}^{\infty} K_{i} (m, r, \lambda) \frac{dV(r)}{dr} dr \implies \mathbf{K}^{T} \mathbf{v} = \mathbf{g}$$

$$\mathbf{K} - \text{discrete kernels} \mathbf{v} - \text{discrete kernels} \mathbf{v} - \text{discrete kernels} \mathbf{v} - \text{discrete kernels} \mathbf{v} - \text{discrete volume}$$

$$\mathbf{Inversion with regularization}$$

$$\int_{\mathbf{MOUUS}}^{\mathbf{u}} \int_{\mathbf{u}}^{\mathbf{u}} \int_$$

Comparison of regularization and KE (Measuremnts were performed in GSFC)

Volume

Results obtained in Summer 2011 in GSFC during DISCOVERY campaign

20 July. Extinction at 532 nm is calculated by Klett. Height res. – 7.5 m, temporal res. – 2 min. Laser: 300 mJ at 355 nm, 50 Hz, Telescope – 400 mm aperture

Retrieval particle parameters from $3\beta+1\alpha$ set. Height res. ~100 m, temporal res. – 6 min

Effective radius

Real part of RI

Comparison with AERONET

21 July 2011, GSFC

Extinction at 532 nm calculated by Klett. Height res. – 7.5 m, temporal res. – 2 min.

Retrievals for 21 July

Extinction at 355 nm, km⁻¹

Episode of volcanic ash intrusion on 20-21 May 2010, Istanbul

Multiwavelength Raman lidar was installed in the Spring 2009 in TÜBITAK (Turkey).

Summary

- Application of "kernels expansion" technique brings a significant increase in speed of computations. Time sequences of particle physical parameters can be obtained.
- Possibility to decrease number of input data is important for coming missions.