Maritime Aerosol Network as a component of AERONET

Observations and modeling of aerosol and clouds properties for climate studies Workshop, 12-14 September 2011, Paris, France Atmos. Meas. Tech., 4, 583–597, 2011 www.atmos-meas-tech.net/4/583/2011/ doi:10.5194/amt-4-583-2011 © Author(s) 2011. CC Attribution 3.0 License.

Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals

A. Smirnov^{1,2}, B. N. Holben², D. M. Giles^{1,2}, I. Slutsker^{1,2}, N. T. O'Neill³, T. F. Eck^{2,4}, A. Macke⁵, P. Croot⁶, N. B. Nelson¹⁵, V. F. Radionov¹⁶, C. M. Duarte¹⁷, R. Losno¹⁸, J. Sciare¹⁹, K. J. Voss²⁰, S. Kinne²¹, N. R. Nalli²², E. Joseph²³, K. Krishna Moorthy²⁴, D. S. Covert²⁵, S. K. Gulev²⁶, G. Milinevsky²⁷, P. Larouche²⁸, S. Belanger²⁹, E. Horne³⁰, M. Chin³¹, L. A. Remer³², R. A. Kahn³², J. S. Reid³³, M. Schulz¹⁹, C. L. Heakl³⁴, J. Zhang³⁵, K. Lapina³⁴, R. G. Kleidman^{32,36}, J. Griesfeller¹⁹, B. J. Gaitley³⁷, Q. Tan^{4,31}, and T. L. Diehl^{4,31} ¹Sigma Space Corporation, Lanham, Maryland, USA ²Biospheric Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ³CARTEL, Université de Sherbrooke, Sherbrooke, Québec, Canada ⁴Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, Maryland, USA ⁵Leibniz Institute for Tropospheric Research, Leipzig, Germany ⁶Leibniz Institute of Marine Sciences at the University of Kiel (IFM-GEOMAR), Kiel, German ⁷L'Observatoire de Physique de l'Atmosphère de la Réunion (OPAR), Université de la Réunion, Saint Denis de la Réunion, France ⁸Institute of Atmospheric Optics, Russian Academy of Sciences, Siberian Branch, Tomsk, Russia ⁹Plymouth Marine Laboratory, Plymouth, UK ¹⁰Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland ¹¹Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Ital ¹²Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine, USA ¹³National Institute of Water and Atmospheric Research, Wellington, New Zealand ¹⁴NOAA Pacific Marine Environmental Laboratory, Seattle, Washington, USA ¹⁵Institute for Computational Earth System Science, University of California, Santa Barbara, California, US ¹⁶Arctic and Antarctic Research Institute, Saint Petersburg, Russia ¹⁷IMEDEA (CSIC-UIB), Instituto Mediterráneo de Estudios Avanzados, Esporles (Mallorca), Spain ¹⁸Laboratoire Interuniversitaire des Systèmes Atmosphériques, Université de Paris 7 et Université de Paris 12, Creteil, France ¹⁹Laboratoire des Sciences du Climat et de l'Environnement, Gif-sur-Yvette, France ²⁰Physics Department, University of Miami, Coral Gables, Florida, USA ²¹Institute for Meteorology, University of Hamburg, Hamburg, Germany ²²NOAA/NESDIS Center for Satellite Applications and Research (STAR), Camp Springs, Maryland, USA ²³Department of Physics and Astronomy, Howard University, Washington, DC, USA ²⁴Space Physics Laboratory, Vikram Sarabhai Space Centre, Trivandrum, India ²⁵Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA ²⁶P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia ²⁷Space Physics Laboratory, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine ²⁸Institut Maurice-Lamontagne, Mont-Joli, Québec, Canada ²⁹Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada ³⁰Bedford Institute of Oceanography, Bedford, Nova Scotia, Canada ³¹Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ³²Climate and Radiation Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA ³³Marine Meteorology Division, Naval Research Laboratory, Monterey, California, USA ³⁴Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado, USA ³⁵University of North Dakota, Grand Forks, North Dakota, USA ³⁶Science Systems and Applications, Inc., Lanham, Maryland, USA ³⁷Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA Received: 21 December 2010 - Published in Atmos. Meas. Tech. Discuss.: 8 January 2011 Revised: 11 March 2011 - Accepted: 15 March 2011 - Published: 21 March 2011

Published by Copernicus Publications on behalf of the European Geosciences Union.

Presenter – Alexander (Sasha) Smirnov

e-mail: Alexander.Smirnov-1@nasa.gov

Andrew Sayer, NASA/GSFC

Kostas Tsigaridis, NASA/GISS

http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html

"It is very difficult, Sasha, to run free of charge network"

Dr. Michael King, January 2009

The Maritime Aerosol Network (MAN) component of AERONET provides ship-borne aerosol optical depth measurements from the Microtops II sun photometers. These data provide an alternative to observations from

Maritime Aerosol

- + AEROSOL/FLUX NETWORKS + COLLABORATORS
- + DATA + NASA PROJECTS

+ PUBLICATIONS

+ STAFF

+ SYSTEM DESCRIPTION

AERONET DATA ACCESS

AEROSOL OPTICAL DEPTH

- + Data Display
- + Download Tool
- + Download All Sites
- + Climatology Tables
- + Climatology Maps
- + V2 L2 Data Availability

EROSOL INVERSIONS

- + Data Display
- + Download Tool
- + Download All Sites
- SOLAR FLUX
- + Data Display
- OCEAN COLOR

+ Data Display

CLOUD MODE

+ Data Display

DATA SYNERGY TOOL

+ Data Display

properties over the World Oceans.

Microtops instruments currently in the network have five channels but they may have one of two configurations: 340, 440, 675, 870, 936nm or 440, 500, 675, 870, and 936nm. In addition, the instrument has built-in temperature and pressure sensors as well as the ability to log accurate time and geographical position using a GPS. The Microtops instruments are calibrated at the NASA Goddard Space Flight Center (GSFC) calibration facility via a transfer calibration procedure between the Microtops and the master Cimel sun photometer at GSFC, which has a calibration traceable to a Langley calibration of a Cimel sun photometer and Muana Loa, Hawaii. In general, the estimated uncertainty of the aerosol optical depth in each channel does not exceed plus or minus 0.02, which is slightly higher than the uncertainty of AERONET field (not master) instruments.

Additional information on data processing and quality may be found by choosing the "Data" link in the left column.

islands as well as establish validation points for satellite and aerosol transport models. Since 2004, these instruments have been deployed periodically on ships of opportunity and research vessels to monitor aerosol

MAN Publication Reference:

Smirnov, A., B. N. Holben, I. Slutsker, D. M. Giles, C. R. McClain, T. F. Eck, S. M. Sakerin, A. Macke, P. Croot, G. Zibordi, P. K. Quinn, J. Sciare, S. Kinne, M. Harvey, T. J. Smyth, S. Piketh, T. Zielinski, A. Proshutinsky, J. I. Goes, N. B. Nelson, P. Larouche, V. F. Radionov, P. Goloub, K. Krishna Moorthy, R. Matarrese, E. J. Robertson, and F. Jourdin (2009), Matritime Aerosol Network as a component of Aerosol Robotic Network,

J. Geophys. Res., 114, D06204, doi:10.1029/2008JD011257.

CRUISES

Level 1.5 | Level 2.0

The table below provides information for past, ongoing and planned cruises. The Ship column provides links to the information and data for each cruise. The Region column provides a KML file to view the cruise in Google Earth.

Year	Ship	Region	Status	2009	RP FLIP
2004	RV Akademik Sergey Vavilov	Atlantic Ocean Transect, Southern Ocean	Completed	2009	RV Marion Dufre
2005-2006	RV Akademik Fedorov	Atlantic Ocean Transect, Antarctica	Completed	2009	RV Polarstern
2006-2007	RV Akademik Fedorov	Atlantic Ocean Transect, Antarctica	Completed	2009	RV Oceania
2007	Ecklonia	Atlantic Ocean near South African Coast	Completed	2009	RV Sonne
2007	RV Polarstern	Atlantic Ocean Transect	Completed	2009	Trans Future 5
2007	RV Urania	Mediterranean Sea	Completed	2009	RV Polarstern
2007	Trans Future 5	Pacific Ocean Transect	Completed	2009	RV Antea
2007	RV Oceania	Baltic, Norwegian, Greenland Seas	Completed	2009	RRS James Coo
2007	RV Aranda	Gulf of Bothnia	Completed	2009	RV Akademik lo
2007	CCGS Louis St. Laurent	Beaufort Sea	Completed	2009	RV Marion Dufre
2007	Roger Revelle	Arabian Sea	Completed	2009	RV Meteor
2007	RV Oceania	Baltic Sea	Completed	2009-2010	RV Marion Dufre
2007	Roger Revelle	Arabian Sea	Completed	2009-2010	RV Melville
2007	University of Bari	Adriatic Sea	Completed	2009-2010	RV Astrolabe
2007	RV Polarstern	Atlantic Ocean Transect	Completed	2009-2010	RV Akademik Fe
2007	RRS Discovery	Canary-Cape Verde	Completed	2009-2010	RV Ocean Watc
2007	RV Marion-Dufresne	South Indian Ocean	Completed	2010	Prince Albert II
2007-2008	NOAA Ronald H. Brown	Pacific Ocean Transect	Completed	2010	RV Astrolabe
2007-2008	MV SA Agulhas	Southern Ocean	Completed	2010	FORV Sagar Sa
2007-2008	RV Akademik Fedorov	Atlantic Ocean Transect Antarctica	Completed	2010	PV 1
2008	RRS Discovery	Canary-Cane Verde	Completed	2010	CCCS Hudson
2008	RV Polarstern	Southern Atlantic	Completed	2010	NOAA Banald H
2008	RV Knorr 2008	North Atlantic Ocean	Completed	2010	RUAA Konaid H
2008	Trans Euture 5	Pacific Ocean Transact	Completed	2010	RV Southern Su
2000	RV/1'Atalante	Gulf of Lion	Completed	2010	RV Antea
2008	RV E Aldidnie	Atlantic Ocean Transact	Completed	2010	RV Marion Dufre
2000	MV Akbar 2008	Ray of Rongal	Completed	2010	RV Polarstern
2000	PV Islandia	Cape Vorde	Completed	2010	NOAA Ronald H
2000		Paring See	Completed	2010	MV Zim Iberia
2008	CCCS Amundaon	Beaufart See	Completed	2010	RV Oceania
2000	Tropo Euturo 5	Beatin Ocean Transact	Completed	2010	RV Atlantis
2008		Pacific Ocean Transect	Completed	2010	RV Knorr
2008		Santa Darbara Dasin	Completed	2010	RV Marion Dufre
2008	RRV Alliance	Atlantia Occan Transport	Completed	2010	RV New Horizon
2008	RKO James Clark Ross	Case Verde	Completed	2010	RV Melville
2008	NOAA Dependent La Depute	Cape Verde	Completed	2010	RV Marion Dufre
2008	NOAA Ronald H. Brown	Atlantia Ocean transat	Completed	2010	CCGS Amundse
2008	RV Polarstern	Atlantic Ocean transect	Completed	2010	RV Marion Dufre
2008	RV Maria S. Merian	Central and Tropical Atlantic	Completed	2010	RV Oceania
2008	RV Marion-Dufresne	South Indian Ocean	Completed	2010	MV Zim San Die
2008	RV Meteor	Pacific Ocean	Completed	2010	NRV Alliance
2008-2009	RV Sagar Kanya	Bay of Bengal	Completed	2010	RV Marion Dufre
2008-2009	RV Akademik Fedorov	Atlantic Ocean transect	Completed	2010	RV Akademik Io
2009	Norwegian Sun	Southern Atlantic and Pacific	Completed	2010	HC Maria
2009	R/V Marcus G. Langseth	Tropical Pacific	Completed	2010	RV Marion Dufre
2009	FORV Sagar Sampada	Arabian Sea	Completed	2010	RV Roger Revel
2009	RV Hesperides	Pacific Ocean	Completed	2010	RV Marion Dufre
2009	NRV Alliance	Ligurian Sea	Completed	2010	RV Meteor
2009	RV Oceania	Baltic Sea	Completed	2010	RRS Discovery
2009	RV Baruna Jaya IV	Java Sea	Completed	2010	RRS James Coo
2009	RV Marion Dufresne	South Indian Ocean	Completed	2010	RV Polarstern
2009	RV Polarstern	Atlantic Ocean Transect	Completed	2010	KAUST Explore
2009	RV Akademik	Black Sea	Completed	2010	RV Marion Dufre
2009	RV Islandia	Cape Verde	Completed	2010	RRS James Co
2009	RRS Discovery	Canary-Tropical Atlantic	Completed	2010	RV Southern Su
2009	RV Oceania	Baltic Sea	Completed	2010-2011	RRS James Cla
2009	RV Jan Mayen	Norwegian, Greenland Seas	Completed	2010-2011	NP Almirante Ma
2009	RV Kilo Moana	North Pacific Ocean	Completed	2010-2011	RV Akademik Fo
2009	NOAA Ronald H. Brown	Tropical Atlantic	Completed	2010-2011	RV Hesperides
2009	RV Oceania	Norwegian, Greenland Seas	Completed	2011	RV Marion Dufre
2009	CCGS Amundsen	Beaufort Sea	Completed	2011	RV Kilo Moana

009	RP FLIP	Tropical Pacific	Completed
009	RV Marion Dufresne	South Indian Ocean	Completed
009	RV Polarstern	Northern Greenland Sea	Completed
009	RV Oceania	Baltic Sea	Completed
009	RV Sonne	Pacific Ocean	Completed
009	Trans Future 5	Pacific Ocean	Completed
009	RV Polarstern	Atlantic Ocean transect	Completed
009	RV Antea	South Indian Ocean	Completed
009	RRS James Cook	Atlantic Ocean transect	Completed
009	RV Akademik loffe	Atlantic Ocean transect	Completed
009	RV Marion Dufresne	South Indian Ocean	Completed
009	RV Meteor	Tropical Atlantic	Completed
9-2010	RV Marion Dufresne	South Indian Ocean	Completed
9-2010	RV Melville	South Pacific Ocean	Completed
9-2010	RV Astrolabe	South Pacific and South Ocean	Completed
9-2010	RV Akademik Fedorov	Atlantic Ocean transect, South Ocean	Completed
9-2010	RV Ocean Watch	Around the Americas	Completed
010	Prince Albert II	Southern Atlantic and South Ocean	Completed
010	RV Astrolabe	South Ocean	Completed
010	FORV Sagar Sampada	Arabian Sea	Completed
010	RV 1	South China Sea	Completed
010	CCGS Hudson	North Atlantic Ocean	Completed
010	NOAA Ronald H. Brown	Tropical Atlantic	Completed
010	RV Southern Surveyor	Indian Ocean	Completed
010	RV Antea	Indian Ocean, Mozambique Channel	Completed
010	RV Marion Dufresne	Indian Ocean	Completed
010	RV Polarstern	Atlantic Ocean transect	Completed
010	NOAA Ronald H. Brown	Tropical Atlantic	Completed
010	MV Zim Iberia	Pacific Ocean, Indian Ocean, Arabian Sea	Completed
010	RV Oceania	Baltic Sea	Completed
010	RV Atlantis	vvest Coast US	Completed
010	RV Knorr	Propical Atlantic	Completed
010	RV Manon Durieshe	Gulf of Colifornia	Completed
010	RV New Honzon		Completed
010	RV Marion Dufreene	Equatorial Pacific Ceram Sea	Completed
010	CCGS Amundsen	Labrador Sea, Hudson Bay	Completed
010	RV Marion Dufresne	Indian Ocean	Completed
010	RV Oceania	Nonwegian Greenland Seas	Completed
010	MV Zim San Diego	South China Sea, Gulf of Siam	Completed
010	NRV Alliance	Ligurian Sea	Completed
010	RV Marion Dufresne	South Indian Ocean	Completed
010	RV Akademik loffe	Northern Atlantic	Completed
010	HC Maria	Atlantic Ocean	Completed
010	RV Marion Dufresne	South Indian Ocean	Completed
010	RV Roger Revelle	North Pacific Ocean	Completed
010	RV Marion Dufresne	South Indian Ocean	Completed
010	RV Meteor	Tropical Atlantic	Completed
010	RRS Discovery	South Atlantic Ocean	Completed
010	RRS James Cook	Atlantic Ocean transect	Completed
010	RV Polarstern	Atlantic Ocean transect	Completed
010	KAUST Explorer	Red Sea	Completed
010	RV Marion Dufresne	South Indian Ocean	Completed
010	RRS James Cook	South Atlantic Ocean	Completed
010	RV Southern Surveyor	Tasman Sea	Completed
0-2011	RRS James Clark Ross	South Atlantic Ocean	Completed
0-2011	NP Almirante Maximiano	South Atlantic Ocean	Completed
0-2011	RV Akademik Fedorov	Atlantic Ocean transect, Southern Ocean	Completed
0-2011	RV Hesperides	Malaspina Expedition	Completed
011	RV Marion Dufresne	South Indian Ocean	Completed
011	RV Kilo Moana	North Pacific Ocean	Completed

2011	RV Tangaroa	South Pacific Ocean	Completed
2011	RV Melville	South Atlantic Ocean	Completed
2011	RV Marion Dufresne	South Indian Ocean	Completed
2011	FRV Tom Marshall	Moreton Bay	Completed
2011	RV Astrolabe	Southern Ocean, South Pacific	Completed
2011	RV Melville	South Atlantic Ocean	Completed
2011	RV Challenger	coast of Tasmania	Completed
2011	RRS Discovery	Tropical Atlantic	Completed
2011	RV Sagar Sampada	Arabian Sea	Completed
2011	RV Oceania	Baltic Sea	Completed
2011	RV Laurence M. Gould	South Atlantic Ocean	Completed
2011	RV Maria S. Merian	Tropical Atlantic	Completed
2011	RV Almirante Gago Coutinho	Atlantic Ocean	Completed
2011	RV Oceania	Baltic Sea	Completed
2011	RV Polarstern	Atlantic Ocean transect	Completed
2011	RV Oceania	Baltic Sea	Completed
2011	KAUST Explorer	Red Sea	Completed
2011	RV Mare Nigrum	Black Sea	Completed
2011	RV Akademik	Black Sea	Completed
2011	Dream Island	Red Sea	Completed
2011	SRVx 8501	Chesapeake Bay	Completed
2011	RV Akademik	Black Sea	Completed
2011	NOAA Ronald H. Brown	Atlantic Ocean	Completed
2011	RV Oceania	Norwegian, Greenland Seas	Completed
2011	EV Nautilus	Black, Mediterranean Seas	Ongoing
2011	SY Task	Baltic Sea	Ongoing
2011	RV Maria S. Merian	Atlantic Ocean	Ongoing
2011	Trans Future 5	Pacific Ocean	Planned
2011	RV Marion Dufresne	South Atlantic Ocean	Planned
2011	RV Mirai	Indian Ocean	Planned
2011	RV Roger Revelle	Indian Ocean	Planned

icy and Important Notices

Curator: David M. Giles NASA Official: Brent N. Holben Last Updated: July 16, 2009

Scientific Objectives

- Climate change studies (direct and indirect forcing)
- Satellite retrievals validation
- Validation of global aerosol transport model simulations

- Filling data gaps in global aerosol distribution
- How representative are the island measurements
- Atmospheric correction

Number of cruises completed

Summary

• Number of cruises completed – 145 • Number of measurement days –>2600 Number of measurement series->15600 • Number of ongoing cruises – 3 • Number of planned cruises - 7

MAN products:

- Aerosol optical depth (Level 1; Level 1.5; Level 2)
- Water vapor content (Level 1; Level 1.5; Level 2)
- Aerosol optical depths: fine (sub-micron) and coarse (super-micron) at 500 nm (Level 1; Level

Maritime Aerosol Network global coverage (September 2011)

ADD 500pm

AERONET Maritime Aerosol Network

Cruise tracks and daily averages of aerosol optical depth at 500 nm (squares are colored with respect to AOD values, i.e. <u>blue – AOD<0.10</u>, <u>green – bls AOD<0.2</u>, <u>yellow – 0.2 AOD<0.3</u>, <u>orange – 0.3 AOD<0.5</u>, <u>red – 0.5 AOD<0.7</u>, <u>purple – AOD ≥0.7</u>).

Coarse mode fraction of AOD

Cruise tracks and daily averages of coarse mode fraction of aerosol optical depth at 500 nm (squares are colored with respect to coarse mode fraction, i.e. blue – cmf<0.2, group = 0.6≤cmf<0.8, red – cmf>0.8).

Coarse mode AOD

Cruise tracks and daily averages of coarse mode aerosol optical depth at 500 nm³ (squares are colored with respect to coarse AOD values, i.e. grey – AOD<0.05, blue – 0.05<AOD<0.10, ________, yellow – 0.2≤AOD<0.3, orange – 0.3≤AOD<0.5, red – 0.5≤AOD<0.7, purple – AOD≥0.7).

AOD and wind speed analysis

Comparison with satellite retrievals

MAN 550 mn AOD

SeaWiFS 550 mn AOD

Courtesy Andrew Sawyer, NASA/GSFC

Comparison with global aerosol model

Courtesy Kostas Tsigaridis, NASA/GISS

Comparison with global aerosol models

Smirnov et al., Maritime Aerosol Network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals, Atmos. Meas. Tech., 4, 583–597, 2011.

Comparison with satellite retrievals

Smirnov et al., Maritime Aerosol Network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals, Atmos. Meas. Tech., 4, 583–597, 2011.

Didier Tanré and his role in my life

罰

AEBONET-A Federated Instrument Network and Data Archive for Aerosol Characterization

B. N. Holben, * T. F. Eck, † I. Slutsker, † D. Tanré, † J. P. Buis, # A. Setzer, * E. Vermote,^{**} J. A. Reagan,¹¹ Y. J. Kaufman,^{*} T. Nakajima,¹¹ F. Lavenu,¹⁵ I. Jankowiak,¹ and A. Smirnov¹

The concept and description of a remote vensing acrossedmontroving network initiated by NASA, developed to sup-port NASA, CNES, and NASDA's Earth surfalite systemsunder the name AEROVET and expanded by nationalal collaboration, is described. B ary satellites GOES and converses to the goodetismary autolities GOES and EFTONATS Data Collection Systems allows reception of preventing in noar real-time from approximately 757. The Earth's worker and with the expected additions of MS, the executing will increase to 90% in 1909. AMS, real-out and the execution of the expected addition of stephend a UNEA-hand noar reactions preventing, despite of analogies system pursishing internet across to the energy or obtaind stephene terminations.

e. Information on the nutem is new al database, source, latp//span the project homepage, latp//span

d'Ontique Atmosphétique, U.S.T. de Lifle, Villenstique, Paris, France spinas Espactas, Sao Jusi dos Campos, Bozel daskaid, NASA/CSPC, College Paris

nonon maha, Megaro-In, Tokyo, Japan Ecolo Normale Superioure, Paris, alence to Breat Holben, NASAUSPC, Code

URNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D2, PAGES 2261-2238, JANUARY 27, 199

Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS airborne simulator during TARFOX

D. Tanré,¹ L. A. Remer,² Y. J. Kaufman,² S. Mattoo,³ P. V. Hobbs,⁴ J. M. Livingston,⁵ P. B. Russell,⁵ A. Smirnov⁶

Abstract: Reduction and in-situ measurements collected during the Trepospheric Aetoool Radiative Pretring Observational Experiment (TAPACO) are used to not the method for emethod Resolution Imaging Spectromotionerse, will be launched in 100% about the first EGO (Each Observing System), Following the MODES procedure *Trave et al.*, 1997), the spectral arXiv to up of the attravelopter (TOA) measured over the examt in wide spectral range (535-213

GSFC, 31 July 1998

IOURNAL OF GEORHYSICAL RESEARCH VOL. 186 NO. DUI. PAGES 12:067-12:087. IUNE 16

An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET

N. Holben,1 D. Tanré,2 A. Smirnov,13 T. F. Eck,145 I. Slutsker,13 (a) rouent, 'D. Jaffre, A. Smirnov,'' J. F. Eck,''' L. Sutsker,^{1,3} A buhasan,^{1,4} W. N. Newcomb,' J. S. Schafer,^{1,4} B. Chatenet, F. Lavenu,⁸ J. Kaufman,⁷ J. Vande Castle,¹⁰ A. Setzer,¹¹ B. Markham,¹ D. Clark,¹² Frouin,¹³ R. Halthore,^{14,3} A. Karneli,¹⁶ N. T. O'Neill,¹⁷ C. Pietras,¹⁸ T. Pinker,¹⁹ K. Voss,²⁰ and G. Zibordi²¹

Long-term measurements by the AERONET program of spectral acrosol pth, precipitable water, and derived Angstrom exponent were analyzed and into an acrosol optical properties climatology. Ouality assured monthly means ted and described for 0 primary sites and 21 additional multipear sites with used maintee meanments the terminal human terminal multipear sites with led into an ac onal trends for each of these nine sites are discussed and climatic averages presented.

Introduction

Man is altering the acrosol envir unt through land con

ille Marsland, and NASA GSEC. Goverhelt

ent of Meteorology, University of Maryland, College

risht 2001 by the American Ge

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 11, PAGES 1643-1646, JUNE 1, 2000

Relationship between column aerosol optical thickness and in situ ground based dust concentrations over Barbados

A.Smirnov^{1,2}, B.N.Holben¹, D.Savoie³, J.M.Prospero⁴, Y.J.Kaufman⁵, D.Tanre⁶, T.F.Eck^{1,7}, L.Slutsker^{1,2}

Aerosol optical depth measurements over Barbados B through the AERONET network are analyzed. Optical d depth shows a pronounced seasonal pattern, with a maximum observed during summer. The temporal trends of the sumhcometry data were similar to those of ground-based dust o mose of ground-based dust of the cap simple linear regression correspond wern mean monthly values of al., 1998; cencentrations (correlation depth data r estimation of optical depth procedure when dust concentration corresponding measurement s al., 1998; Eck et al., 1999; J derch data in this paper are on Barbado problem de certain ch

An automatic Sun and sky scaming radiometer CIMEL was vablished as an Aerosol Robotic Network (AERONET) site on consider on and Space Flight Center, Biosoheric Sciences Branch

Geeabelt, Maryland. ² Also at Science Systems and Applications, Inc., Lasham, Maryland. ³ Division of Marine and Atmospheric Chemistry, University of Miami,	Table 1. Deployment histor Barbados.
Miani Florida	

mente and ministry inter committy, constantly st mannin,					_
School of Marine and Atmospheric Science, University of Davids	Time period	CIMEL	Reliable channels	Calibration	,
Mard Space Flight Center, Climate and Radiation Branch, land. v d'Optique Atmospherique, Universite des Sciences et	6/596-23/10/96 12/12/96-11/9/97 28/9/97-17/12/97	#25 #25 #74	440 and 670 nm 440 and 670 nm 440 and 670 nm	pro-field interpolation pre-field	21
Line, vineneuve e Aucq, Hance theon ITSS Corporation, Lanham, Maryland.	18/12/97-30/3/98	425 425	440, 670, 870 nm 870 am	pro-field pro-field	į,

change for future assessment [Andreae, 1996]. Regard current conditions, the extent of local aerosol perturbati a global scale is the subject of extensive ground level, ai

we present the results of serosol optical depth that the accurate miss over Barbados, compare optical data in the total

and a second second					
ience, University of	Time period	CIMEL	Reliable channels	Calibration	N
A Radiation Branch,	6/596-21/10/96	#25	440 and 670 mm	pro-ficid	5
ite des Sciences et	1212/96-11/9/97 28/9/97-17/12/97	#25	440 and 670 mm 640 and 870 mm	interpolation per-field	212
dand.	1812/97-30/3/98	#25 #25	440, 670, 870 nm 870 nm	pro-field	75
	22/10/98 23/5/99 28/5/99 28/5/99 23/5/99 22/5/99	#74 #25	440 and 870 am 440, 670, 870 am	pre-field	175

Paper number 1999GL011336. 0094-8276/00/1999GL011336

N is the number of averaged day

ally known as sun photometers. Following is a descrip ion of a new Sun-sky scanning radiometer 0034-425756/810.00

advent of the EOS era of laboratory

a and anginemation of a

dardization for these measurements. The system's auto-matic data acquisition, transmission, and processing fo-clifators acrossed characterization on band, regional, and global scales with applications to transport and radiation

product and a source operations to comport and califolds budget studies, radiative transfer-modeling and calif-tion of satellite acrossil retrievals. This article discusses the operation and phalosophy of the monitoring system, the previous and accuracy of the measuring radiometers, a bard description.

tecurate knowledge of the spatial and temporal exten discussed concentrations and properties has been a limi-ation for assessme their influence on satellite remoted

e processing system, a

et al., 1992) and climate fore and Lucis, 1900, with the exception of the weekly ocean aerosol retrieval product (Bao et t, the voluminous 20-year record of satellite data aced only regional snaphots of aerosol loading, have yielded a database of the optical proper-

a brief description of the to the database. ©Elser

INTRODUCTION

WHER we J., 1989), the

conditions [January and Moulis et al., 1997]. New to Maalie et al., 1997; N pewiose statilite d TOMSNinthu-7 instru-visible channels of AV 1997], are also being -characterize the aeroso their size (Angestön er With the new ge With the new ge MODISTECS [Software [Denohange et al., 19 Corresponding inversion] lechniques un

teres, NASA Goddard Space Flight Cente

la vie est dure les femmes coutent chéres et les enfants arrivent trop faciles

life is tough women are expensive and children come too easy

ЛИТЕРАТУРА

- Смирнов А. В., Шифрин К. С. Статистика спектральной прозрачности атмосферы над морем. — В кн.: Физика пограничного слоя атмосферы и се прикладные аспокты, Л., 1984, с. 121–127, (Сб. науч. грудов (межвузовский); Вып. 85).
- Волков Б. Н., Волгин В. М., Ершов О. А. Спектрофотометр для изучения оптических характеристик морского аэрозоля. – В кн.: Оптика моря. М.: Наука, 1983, 246 с.
- Шифрин К. С., Ершов О. А., Волгин В. М., Кокорин А. М. Исследование аэрозоля пад морем по данным береговых наблюдений. – Изв. АН СССР. Физика атмосферы и океапа, 1980, № 3, с. 254-260.
- Etterman L. UV, visible and IR attenuation for altotudes to 50 km. Env. Res. Pap., 1968, № 285, p. 50.
- Шифрин К. С., Минин И. Н. К теории негоризонтальной видимости. Тр. ГГО, 1957, вып. 68, с. 5–75.
- Таварткиладзе К. А. Статистические характеристики спектральной оптической толщины атмосферы над морской поверхностью. – Изв. АН СССР. Физика атмосферы и океана, 1979, № 11, с. 1218–1222.
- Малкевич М. С., Георгиевский Ю. С., Чавро А. П., Шукуров А. Х. Статистические характеристики спектральной структуры ослабления радиации в приземном слое воздуха. – Изв. АН СССР. Физика атмосферы и океана, 1977, № 12, с. 1257– 1267.
- Viollier M., Tanpe' D., Dechamps P. An algorithm for remote sensing of water colour from space.- Bound. Layer Met., 1980, v. 18, № 3, p. 247-267.

Ленинградское отделение Института океанологии им. П. П. Шпршова АН СССР Поступила в редакцию 1.XI.1984

Ленинградский гидрометеорологический институт

OPTICAL DEPTH OF ATMOSPHERIC AEROSOL OVER THE SEA

SHIFRIN K. S., VOLGIN V. M., VOLKOV B. N., ERSHOV O. A., SMIRNOV A. V.

The results are given of measuring the optical depths of the atmospheric aerosol obtained in marine and coastal regions. Despite significant changeability of the optical depths of the atmospheric aerosol they were shown to have good correlation in the visible and near infrared spectral bands. Regression relations are given which may be used in the problems of remote sensing the ocean – atmosphere system.

Относительная ошибка $\Delta = \frac{\delta_{\lambda_k}}{\tilde{\tau}_a(\lambda_k)}$ составляет около 20%. Погрешности

между измеренными и рассчитанными та иллюстрирует рис. 1.

Анализ собственных чисел и собственных векторов ковариационной матрицы показал, что два первых собственных числа дают 97% вклада в среднюю по спектру дисперсию (92 и 5% соответственно). Поэтому два собственных вектора $\varphi_1(\lambda)$ и $\varphi_2(\lambda)$ удовлетворительно описывают спектральную структуру аэрозольной оптической толщи (c_i – коэффициенты разложения):

$$\sigma_a(\lambda) = \overline{\tau}_a(\lambda) + \sum_{i=1}^2 c_i \varphi_i(\lambda).$$
 (4) ΔN

Значения $\varphi_1(\lambda)$ и $\varphi_2(\lambda)$ приведены в табл. 5.

τ,

Вектор $\varphi_1(\lambda)$ повторяет спектральный ход $\sigma(\lambda)$. Вектор $\varphi_2(\lambda)$ меняет знак около 520 нм. Как показано в [7], $\varphi_1(\lambda)$ характеризует знакопостоянные вариации $\Delta \tau_a(\lambda) = \tau_a(\lambda) - \overline{\tau}_a(\lambda)$, а $\varphi_2(\lambda)$ оппсывает те реализации $\tau_a(\lambda)$, для которых $\Delta \tau_a(\lambda)$ меняют знак в области 520 нм.

NACO

Изменчивость $\tau_a(\lambda)$ зависит от изменчивости концентрации и от изменчивости структуры аэрозоля, т. е. от f(a). Введем отношение

 $\epsilon = \tau_a(439) / \tau_a(660)$.

В алгоритме исключения влияния атмосферы при определении концентрации хлорофилла в морской воде, предложенном в [8], величина є считается заданной. Реальная изменчивость є представлена в табл. 6. Как следует из табл. 6, коэффициенты вариации V_{e} не превышают 18%, в то время как $V_{\tau_{a}} \sim 40 - 60\%$. Таким образом, концентрационная изменчивость $\tau_{a}(\lambda)$ заметно больше структурной.

Рассмотрим теперь величину параметра Ангстрема α . Для океанских данных среднее значение его оказалось 0,55, а для всех данных 0,61. Коэффициент вариации V_{α} =0,51. Из табл. 4 видно, что в океанских условиях параметр α меньше в районах с более прозрачной атмосферой. Увеличение общей мутности атмосферы обычно сопровождается подъемом кривой $\tau_{\alpha}(\lambda)$ в ультрафиолетовой области. Это приводит к возрастанию α .

На рис. 2 приведен частотный график α при $\Delta \alpha = 0,1$. Два ярко выраженных максимума, по-видимому, характеризуют два типа «оптической погоды» в атмосфере над морем. Значению $\alpha = 0,45$ соответствует $\bar{\tau}_a = 0,18$, которое близко к «стандартному». Величина $\alpha = 0,95$ характеризует замутненную атмосферу, здесь $\bar{\tau}_a = 0,30$. Отметим, что на рис. 2 намечается появление третьего максимума в области α около 0,1. Добавим, что среднее значение $\bar{\alpha} = 0,98$ при $\bar{\tau}_a = 0,41$ было получено в [8] в результате годичного мониторинга аэрозольной оптической толщины на Азорских островах (там N = 182).

Общая тенденция в поведении $\tau_a(\lambda)$ такова, что в условиях прозрачной атмосферы преобладает квазинейтральный ход (малые α); с увеличением мутности показатель α растет, проходит через максимум и при туманной дымке снова стремится к нулю. Это означает, что в морской атмосфере малому α соответствуют как случаи малых, так и случаи весьма больших τ_a .

30

Известия АН СССР ФИЗИКА АТМОСФЕРЫ И ОКЕАНА Том 24 • № 10 1988

УДК 551.510.42:551.521.31

ОПТИЧЕСКАЯ ТОЛЩИНА АЭРОЗОЛЯ В ХАРАКТЕРНЫХ МОРСКИХ РЕГИОНАХ

ВОЛГИН В. М., ЕРШОВ О. А., СМИРНОВ А. В., ШИФРИН К. С.

Сообщаются результаты измерсний аэрозольных оптических толщин в видимой и близкой ИК-областях спектра в различных районах Мирового оксана. Показано, что статистически различным только три характерных региона: 1) области открытого оксана, 2) прибрежные районы (вместе с внутренними морями), 3) «море мрака». Анализ спектрального хода аэрозольной оптической толщины показал, что данные наблюдений различаются по величине в центре видимой области и по параметру Ангстрема. Результаты анализа и установленные статистические связи могут быть использованы в качестве априорной информации в задачах дистанционного зондирования.

1. Аэрозольная оптическая толщина τ_a , ее спектральный ход $\tau_a(\lambda)$ представляют собой важную характеристику атмосферы над океаном. Знание ее необходимо при дистанционном зондировании океана из космоса. К сожалению, до сих пор не принесли успеха попытки найти устойчивые корреляционные связи между та и метеопараметрами на уровне моря. Поэтому вопрос о возможности косвенного определения та по метеоданным остается открытым. В связи с этим важную роль продолжают играть различные регрессионные и эмпирические соотношения, позволяющие с той или иной точностью определять τ_a(λ) через какие-либо измеряемые характеристики. Величина τ_а(λ) зависит от множества разных, плохо контролируемых факторов. Один из способов решения задачи об определении т_в (λ) состоит в получении достаточного эмпирического материала и установлении подходящих статистических связей. Такие связи позволят нам по одному или нескольким значениям та (л) при некоторых λ_i рекомендовать наиболее вероятные значения τ_a при всех других λ или рекомендовать стандарты $\tau_a(\lambda)$, которые можно использовать в тех или иных регионах, вообще не делая никаких измерений, и т. д. Некоторые результаты в этом направлении были опубликованы ранее [1-3].

В настоящей работе приведены данные новых измерений τ_a(λ), проводившихся в 1985—1986 гг., и указаны их статистические характеристики. Мы рассмотрим также совокупность всех данных, новых и старых, для выяснения возможности их классификации по типичным регионам (различающимся механизмом генерации аэрозоля). Покажем, что уверенно выделяются три характерных региона: 1) открытый океан, 2) прибрежные районы, куда попадают наблюдения во внутренних морях и береговые измерения, 3) тропическая зона Атлантического океана, подверженная влиянию сахарских выносов (так называемое «море мрака»). Хотя количество значений, относящихся к каждой из этих групп дапных, заметно меньше общего числа измерений за счет выигрыща в однородности материала, статистические связи в целом оказываются менее размытыми.

 Статистические характеристики новых данных приведены в табл. 1. Аппаратура и методика измерения изложена в [1], где показано также, которую первые собственные числа вносят в суммарную по спектру дисперсию. Видно, что первые два вектора удовлетворительно описывают спектральную структуру τ_a(λ) для прибрежных измерений. В случае океанской атмосферы можно также пользоваться двумя собственными векторами, по здесь сумма первых двух собственных чисел вносит в суммарную дисперсию почти такой же вклад, что одно число для прибрежной выборки.

Векторы $\phi_1(\lambda)$ имеют схожий между собой и с [1] спектральный ход для всех районов. Вектор $\phi_2(\lambda)$ меняет знак один раз, но для океанской выборки его спектральный ход несколько отличается от остальных. Это связано, по-видимому, с немонотонностью спектрального хода $\tau_a(\lambda)$ и $r_{\tau\tau}(\lambda_i, \lambda_h)$ из-за ошибок измерений.

Результаты измерений в океанских, прибрежных районах и «море мрака» позволяют сделать следующие выводы.

1. Оптическое состояние атмосферы в каждом регионе следует характеризовать двумя параметрами: значением τ_a (550) и параметром Ангстрема α . Первый характеризует величину замутнения, а второй — среднюю спектральную изменчивость $\tau_a(\lambda)$ в изучаемом спектральном диапазоне.

2. Атмосфера над океаном существенно (более чем в 2 раза) прозрачнее атмосферы других регионов. Среднеквадратичные отклонения также в 4—5 раз меньше.

3. Установлены регрессионные соотношения между та в синей и красной областях спектра, которые могут быть использованы в алгоритмах исключения влияния атмосферы.

4. Показано, что для моделирования особенностей спектрального хода $\tau_a(\lambda)$ в морской атмосфере достаточно использовать два собственных вектора.

Авторы благодарят Б. Н. Волкова за помощь в проведении измерений.

ЛИТЕРАТУРА

- Шифрин К. С., Волгин В. М., Волков Б. Н., Ершов О. А., Смирнов А. В. Оптическая толщина аэрозоля атмосферы над морем//Исследования Земли из космоса. 1985. № 4. С. 21-30.
- Ершов О. А., Смирнов А. В. Спектральная прозрачность прибрежной атмосферы// Исследования Земли из космоса. 1986. № 5. С. 3-8.
- Смирнов А. В., Шифрин К. С. Статистика спектральной прозрачности атмосферы над морем//Физика пограничного слоя атмосферы и ее прикладные аспекты: Межвуз. сб. научи. тр. Л., 1984. Вып. 85. С. 121—127.
- 4. Prodi F., Tomasi C. Sahara dust program//J. Aerosol Sci. 1983. V. 14. № 4. P. 517-527.
- 5. Кондратьев К. Я., Бартенева О. Д., Васильев О. Б. и др. Аэрозоль в районе АТЭП и его радиационные свойства//Тр. ГГО. 1976. Вып. 381. С. 67—130.
- 6. Шифрин К. С., Минин И. Н. К теории негоризонтальной видимости//Тр. ГГО. 1957. Вып. 68. С. 5-75.
- Гашко В. А., Шифрин К. С. Спектральная прозрачность атмосферы в северо-западной части Тихого океана//Оптика моря. М.: Наука, 1983. С. 190—194.
- Viollier M., Tahre D., Dechamps P. An algoritm for remote sensing of water colour from space//Boundary Layer Meteorol. 1980, V. 18. № 3. P. 247-267.

Ленинградский гидрометеорологический ин-т, Ленинградский отдел Ин-та океанологии АН СССР

Поступила в редакцию 29.Х.1987

polaroids in order to attenuate the sun irradiance, and

no cirrus clouds were observed during the campaign. The spectral dependence of the aerosol optical

thickness, $\tau_{a}(\lambda)$, proved to be nearly constant for a given

day, but exhibited large variations from day to day.

Figure 2 shows the $\tau_a(\lambda)$ behavior observed for the 4

days. On 27 July, the aerosol optical thickness increased largely in the blue range. For the other days, the spectral

variation was more flat, mainly on 29 July where the optical thickness was almost constant in the visible

range, and decreased slowly at near-IR wavelengths.

Figure 2 shows that, through the large investigated spectral range, the $\tau_a(\lambda)$ behavior could not be ac-

counted for with a single Angström coefficient. There-

fore, the log-log plots of $\tau_a(\lambda)$ versus λ , in Fig. 2, were

crudely fitted by two linear laws, from 445 to 668 nm

and from 668 to 1650 nm, thus providing two Ang-

ström coefficients, hereafter noted α_{v} and α_{IR} , respec-

tively. In Table 1, we reported for the 4 days the values

obtained for α_n and α_{IR} . The large value of α_n proves

the presence of small particles on 27 July, whereas

larger particles were predominant on 29 July. The

mean deviations $\Delta \alpha_{\rm p}$ (or $\Delta \alpha_{\rm IR}$) (see Table 1) showed

fairly good stability of the aerosol size distribution for

a given day, as noted previously. Deviations of the

Angström coefficients were somewhat larger in near-

IR than in the visible, as a result of the larger mea-

nm, using a silicium detector with an aperture angle

of 1°. About 5 min were needed to scan scattering an-

gles from 2° to 30°; the observations were performed

Aureole measurements were performed at $\lambda = 850$

Saharan Aerosols over the South of France: Characterization Derived from Satellite Data and Ground Based Measurements

J. L. DEUZE, C. DEVAUX, M. HERMAN, R. SANTER AND D. TANRE

Laboratoire d'Optique Atmosphérique, Université des Sciences et Techniques de Lille, France

20 May 1987 and 28 September 1987

ABSTRACT

In July 1983, the summer transport of Saharian aerosols across the Mediterranean Sea was observed. The dust cloud was particularly dense and was clearly detected in A.V.H.R.R. and METEOSAT imageries. Optical thicknesses and Angström coefficients have been derived from these pictures. During the same period, ground based observations—transmission, aureole and polarization measurements—were performed at the Observatoire de Haute Provence (southeast of France). Measured aerosol optical thicknesses at 550 nm were as large as about 1.5.

The optical thicknesses and Angström coefficients derived from the two experiments are compared and are in good agreement.

1. Introduction

In summertime, westward migrations of saharan dust clouds over the tropical North Atlantic Ocean are commonly observed from satellite imagery. Local and time variations of the dust have been described by Carlson and Prospero (1972). The aerosol optical thickness has been derived from satellite data in the visible range (Carlson et al. 1977; Norton et al. 1980; Griggs 1979; Koepke and Quenzel 1979). The integrated mass of dust was obtained by Fraser (1976). Dust outbreaks have also been observed over the eastern Mediterranean Sea by Mekler et al. (1977) and Otterman et al. (1982). These dust clouds have also appeared during nightime in the METEOSAT IR channel (Legrand et al. 1985).

During July 1983, ground based measurements were planed at the O.H.P. ("Observatoire de Haute Provence", about 80 km from the mediterranean coast with an altitude of 1900 m) in order to observe the EI Chichon stratospheric layer. This objective was disturbed by the occurrence of a saharan dust outbreak, which provided the opportunity to characterize this dust cloud from ground measurements.

This event was looked for in the AVHRR (on NOAA-7) and METEOSAT imageries over the Mediterranean Sea. Thus, we have the interesting possibility of comparing aerosol characterization derived from satellite imagery with a more detailed characterization derived from ground observations. We will show that the aerosol thickness (τ_a) and the Angström coefficient deduced from satellite data are in good agreement with the ground measurements.

2. The ground based measurements

a. Presentation of the measurements, from 26 July to 29 July 1983

Extinction measurements were performed with two multispectral radiometers. The first one has a silicium detector and covers the range from 440 to 1100 nm; the second has a PbS detector, and performs measurements up to 3000 nm. The two radiometers had been previously calibrated, (April 1983), using Langley plots. The seven band measurements are centered at 445, 551, 648, 864, 1040, 1586 and 2208 nm.

In the wavelength range of our band measurements, water vapor and ozone absorption is simply a corrective term. This gaseous absorption was merely computed from LOWTRAN-5 code (Kneizys et al. 1980), by using the climatologic value of London et al. (1976) for the ozone content, and the midlatitude summer model of Mc Clatchey et al. (1970) for the water vapor content. The Rayleigh optical thickness was estimated from the pressure measurements. By subtracting Rayleigh scattering and gaseous absorption components from the total optical thickness, we obtained the aerosol optical thickness τ_a . Figure 1 gives τ_a versus the UTC time, at $\lambda = 550$ nm, for the 4 observation days. On the morning of 26 July, the aerosol content was almost constant and Langley plots drawn from these data confirmed the previous calibration. Despite the high altitude of the site (1900 m), τ_a was always very large, with a maximum of 1.7 on 27 July, which is quite an un-

FIG. 1. Instantaneous aerosol optical thickness τ_{g_1} at 550 nm, for the 4 days. A full line has been drawn through the smooth measurements obtained on 26 July. The symbols for other days are included on the figure. It was initially planned that the traditional Langley technique would be used to derive τ_{g_1} so that no extinction measurements were performed around noon, when the air mass did not vary; this explains the lack of information, from 1000 to 1300 UTC, in Fig. 1.

usual value. Note that it is unlikely that cirrus clouds could explain these large values of τ_a . The sky was routinely observed around the sun disk, using cross-

surement errors.

FIG. 2. Aerosol optical thickness as a function of the wavelength for the 4 days. The circles correspond to the measurements, and bars indicate the estimated errors. The solid lines represent the optical thickness spectral dependence computed with the retrieved size distribution.

Corresponding author address: Dr. J. L. Deuze, Laboratoire D'Optique Atmospherique, Universite Des Sciences Et Techniques De Lille, 59655 Villeneuve D'Ascq Cedex, France.

УДК 551.593.5

РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ СПЕКТРАЛЬНОЙ ПРОЗРАЧНОСТИ АТМОСФЕРЫ В МОРСКИХ УСЛОВИЯХ

- III -

Ю.В.Виллевальде, К.С.Ламден, А.В.Смирнов

I.В последнее время в связя с задачами дистанционного зонди рования океана с ИСЗ возрастает ценность экспериментальных дан -

HHX

p03

АКАДЕМИЯ НАУК СССР ТОМСКИЙ ФИЛИАЛ СИЕИРСКОЕ ОТДЕЛЕНИЕ ИНСТИТУТ ОПТИКИ АТМОСФЕРЫ

Научный совет АН СССР по проблеме "Когерентная и нехинейная оптика"

Секция "Распространение оптических воли" Научного совета АН СССР по комплексной проблеме "Распространение радиоволи"

УШ ВСЕСОЮЗНЫЙ СИМПОЗИУМ ПО ДАЗЕРНОМУ И АКУСТИЧЕСКОМУ ЗОНДИРОВАНИЮ АТМОСФЕРЫ

> Тезисы докладов (часть I)

> > Томск - 1984

