What do precipitation forecast tell us about the second aerosol indirect effect?

Olivier Boucher, Met Office, Now at Laboratoire de Météorologie Dynamique, Paris **Marie Doutriaux-Boucher**, Met Office, Now at EUMETSAT, Darmstadt, Germany **Sean Milton**, Met Office, Exeter, U.K.

Jean-Jacques Morcrette, Angela Benedetti, ECMWF, Reading, U.K.

Nicolas Huneeus, Laboratoire des Sciences du Climat et de l'Environnement, IPSL, Gif

Inspiration for the study

Monthly mean incremental analysis update in atmospheric temperature (K)

"a GCM without aerosol physics within a data assimilation system"

Alpert et al., Nature, 1998

MACC aerosol forecast and monitoring system (refer to J.-J. Morcrette's presentation on Monday)

MACC aerosol forecast and monitoring system (refer to J.-J. Morcrette's presentation on Monday)

Experimental setup

CTRL control experiment, no aerosol direct and indirect effects

DIR: aerosol direct effect, no aerosol indirect effect

IND: no aerosol direct effect, aerosol indirect effect

DIR+IND aerosol direct and indirect effects

==> One year (2003) of daily 72h weather forecasts initialised from 00Z with the full-ECMWF 4D-VAR extended to the aerosol state at T255 resolution

- ==> CTRL=aerosol climatology
- ==> DIR=aerosol radiative effects switched on
- ==> IND=CCN number from sea-salt, sulfate and OM aerosols

Precipitation data: GPCP

Global Precipitation Climatology Project

Precipitation data

Lead time 0

GPCP

90N

45N

0

45S

90S

180

0

Mean = 2.82705

90E

180

90W

Average GPCP precip, for day 00 in month05

Average FGPS precip. for month 05

180

20

DIR+IND

Lead time 0

Correlation coefficient alpha-tau Precip v

$R(\tau, precip)$

CTRL

GPCP

DIR+IND

Histogram Forecast – GPCP Error on precip rate Slightly better forecasts for a lead time of 0 day as compared to a lead time of 2 days ...

... but no impact of the aerosol indirect effect

Europe - June 2003

Root mean square error of the precipitation forecast

DIR+IND

May 2003

(Very small) positive impact over the NH continents. Is it real?

Atmos. Chem. Phys. Discuss., 11, 20203–20243, 2011 www.atmos-chem-phys-discuss.net/11/20203/2011/ doi:10.5194/acpd-11-20203-2011 © Author(s) 2011. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Aerosol-cloud-precipitation effects over Germany as simulated by a convective-scale numerical weather prediction model

A. Seifert¹, C. Köhler^{1,2}, and K. D. Beheng³

¹Deutscher Wetterdienst, Offenbach, Germany ²Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany ³Karlsruher Institut für Technologie, Karlsruhe, Germany

Received: 6 July 2011 - Accepted: 8 July 2011 - Published: 18 July 2011

Correspondence to: A. Seifert (axel.seifert@dwd.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

20203

AC 11, 20203∹	PD 20243, 2011
Aerosol-cloud- precipitation effects over Germany	
A. Seife	ert et al.
Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
19	ы
	•
Back	Close
Full Screen / Esc	
Printer-frie	ndly Version
Interactive	Discussion
\sim	0

b) Experiment 2: low CCN, low IN

Conclusions

- We have performed a series of global weather forecasts with and without interactive aerosols as part of the MACC project.
- There is very little impact of having interactive aerosols when it comes to forecasting precipitation on the large-scale $(1^{\circ}x1^{\circ})$. Effects could be larger at the smaller scale, and in the case of orographic precipitation.
- Possibly very small positive impact (as compared to GPCP) over the continents (rms error) and over China in particular (less large positive errors).
- More sophisticated precipitation skill score needed.
- Try other parametrisations of the aerosol indirect effect?

Thank you for your attention

Questions?

