LEFE 2021 – Atelier « Interactions Aérosols Nuages » - THÈME : Sources et Propriétés des noyaux glaçogènes

Ice nucleation abilities of soot particles and crystal habits

<u>C. Pirim</u>, R. Ikhenazene, Y. Carpentier, J. A. Noble, M. Ziskind, C. Focsa, and B. Chazallon

MERMOSE Measurement and rEasearch on aircRaft engine eMissiOnS rEactivity

Cappa Climib

Soot formation process, adapted from Thomson Lab. U. Toronto

- Soot particles: carbonaceous particulate matter produced by incomplete combustion of hydrocarbons, often found covered in a surface layer of adsorbed molecules;
- Natural and anthropogenic sources: biomass burning, exhausts emissions from aircraft or automobile engines, ships, industrial combustion or domestic fires;
- Environmental Impact: particles are involved in many physical and chemical processes that can affect the atmospheric radiative forcing or the formation of clouds and their lifetime expectancy.

- Soot emissions from aircraft engines enhance background concentration of carbonaceous particles in the troposphere (Hendricks et al., ACP, 2004)
- Projected values for aircraft soot particles emissions ≈ 8.3-29 Gg.yr⁻¹ by 2050 (Brasseur et al., BAMS, 2016)
- Contrails may develop into contrail cirrus clouds with similar properties than those of native cirrus clouds provided sufficient ambient humidity (Schumann, Contrail cirrus. Cirrus, 2002)
- \rightarrow Studies that address the role of soot in cirrus formation are important to assess Aircraft-induced perturbations

 \rightarrow No clear consensus as to whether soot particles promote ice nucleation at low sursaturation ratios with respect to ice (*S_i*) in **deposition mode**

4

≠ origins for soot particles (chemical composition + morphology because ≠ combustion processes)
≠ instruments used to probe nucleation events (diffusion chambers, cold stages, wind tunnel, ...)
≠ parameters used to characterize soot activity (nucleation onset, activated fractions : 1%, 10%)

Objective & Methodology

Step 1 - Build a versatile experimental setup suited to test ice nucleation activities

Step 2 - Analyze soot particles before being processed in the nucleation chamber using complementary techniques (Raman, FTIR, Two-Step Lasers Mass Spectrometry [L2MS], Secondary Ion Mass Spectrometry [SIMS])

Step 3 - Choose laboratory soot surrogates representative of soot particles emitted by aircraft engines based on their **surface chemical composition** and/or **structure**

Step 4 - Simulate temperature (**T**°**C**), humidity ratios (**RH**) and pressure (**P**) found in the upper troposphere to **test** soot particles' **ice nucleation activity** in the lab.

Are soot samples ice active in deposition mode? Which parameter(s) predominantly drive(s) nucleation events?

Step 1: IDroNES (Ice and Droplet Nucleation Experimental Setup)

Step 1: IDroNES (Ice and Droplet Nucleation Experimental Setup)

Test 1 \rightarrow relative humidity (RH) needed to observe deliquescence and efflorescence phenomena from NaCl crystals at a given temperature

Ikhenazene et al. JPhysChemC 2020

Step 1: IDroNES (Ice and Droplet Nucleation Experimental Setup)

Test 2 \rightarrow Nucleation on sample stage (nickel) at T= -45°C (228 K)

Growth rate along 1 dimension : 0.12 μ m /s (7,2 μ m/min), S_i =1.25 @-45°C

Step 2: Soot particles collection ...

Fuel: propane gas (C₃H₈)

Samples: CAST-1 & CAST-3

McKenna burner

Fuel: Jet A-1 Kerosene

Samples: Kero-03 & Kero-14

All samples collected onto 185 μ m-thick silicon wafers

Step 2: ... and analyses: surface composition

L2MS + SIMS + NEXAFS + Raman + FTIR:

- **PAH content**: CAST-3 >> CAST-1; Kero-14 >> Kero-03
- PAH distribution: CAST-3 (heavy), CAST-1 (light), Kero-14 (light), Kero-03 (heavy)
- Presence of alkanes + alkyl-PAH: CAST-1
- **Oxygen content**: CAST-3 (10 at%), CAST-1 (4 at%), observed in Kero samples
- Correlation between mass spec PAH content+distribution and Raman spectra

Ikhenazene et al. *JPhysChemC* 2020 Marhaba *et al.* Combust.Flame 2019 Parent *et al.* Carbon 2016 Ouf *et al.* Sci Rep. 2016 Ess et al. Carbon 2016 Desgroux *et al.* PCI 2013

Step 2: ... and analyses: structure

Raman + TEM + Surface reconstruction

- **Crystallite order**: CAST-3 (poor), CAST-1 (turbostratic), presence of defects observed in graphite flakes
- **Porosity**: about the same for CAST-3 and CAST-1
- Mean pore size (hydraulic diameter) estimate: 0.66 μm (CAST-3), 2 μm (CAST-1)
- Surface available for nucleation: about the same for CAST-3 and CAST-1

Chazallon *et al.* in prep Ikhenazene et al. *JPhysChemC* 2020 Marhaba *et al.* Combust.Flame 2019 Parent *et al.* Carbon 2016 Ouf *et al.* Sci Rep. 2016 Ess et al. Carbon 2016 Desgroux *et al.* PCI 2013

Step 2: ... and analyses: structure

micron

10

0

- **Crystallite order**: CAST-3 (poor), CAST-1 (turbostratic), presence of defects observed in graphite flakes
- **Porosity**: about the same for CAST-3 and CAST-1
- Mean pore size (hydraulic diameter) estimate: 0.66 μm (CAST-3), 2 μm (CAST-1)
- Surface available for nucleation: about the same for CAST-3 and CAST-1

10

0

60

micron

10 E

50

micron

micron

40 30 20

Step 3-4: Nucleation activity of aircraft soot surrogates

a) CAST-3 at -45°C, b) graphite flake at -35°C and c) at -45°C. d) + e) CAST-1, preferential crystal growth on soot islands at -55 and -45°C, respectively, f) CAST-3c at -45°C. prime and double prime symbols = time lapse pictures of the same areas

Preliminary study of ice habits and metastable water

Preliminary study of ice habits and metastable water

Are soot samples tested here ice active in deposition mode?

- \rightarrow Yes, here soot particles do not need high partial water pressure to trigger ice crystal growth at their surface
- → Slight differences in activity between different types of soot are observed at moderate temperatures (warmer than -38°C)
- → hydrophobic substrate in immersion mode does not necessarily imply icephobic substrate in deposition mode (Ramachandran et al. 2016, Nosonovski et al. 2012, Farhadi et al. 2011)

Which parameter predominantly drives nucleation events?

 \rightarrow Unclear from these experimences since soot samples differ in both their chemical composition and their structure:

Surface chemical composition

→ influences water affinity (alkanes, branched PAH vs PAH)
→ provides potentially optimized surface bonding (chemical templates) for stable ice structures to grow

→ offers active sites (heteroatoms) to which water molecules may preferentially attach

Structure

- → provides active sites (defects) with various defect densities
- → surface roughness and pores in which the pore condensation freezing mechanism (PCF) might take place

 \rightarrow Need for systematic studies limiting the number of parameters changing between \neq soot samples \leftarrow

Acknowledgements

F.-X. Ouf, E. Therssen, N. Nuns

Thanks for your attention!

